跳到主要内容

5 Quantum Computing

Motivation: Why Quantum Computing?

Classical Computing Limitations

  • Heat dissipation limit
  • Landauer’s Principle
  • Moore’s Law slowdown
  • Hard computational problems

Extended Church–Turing Thesis

  • Any efficiently computable function can be efficiently simulated by a probabilistic Turing machine
  • Classical alternatives (GPU, TPU, optical computing) give polynomial, not exponential speedups

Quantum Bits (Qubits)

Qubit Representation

ψ=α0+β1\begin{equation*} |\psi\rangle = \alpha |0\rangle + \beta |1\rangle \end{equation*}
  • Normalization:
α2+β2=1\begin{equation*} |\alpha|^2 + |\beta|^2 = 1 \end{equation*}
  • Measurement probabilities:
    • ( P(0) = |\alpha|^2 )
    • ( P(1) = |\beta|^2 )

Core Quantum Principles

Superposition

  • A qubit can exist in multiple states simultaneously

Interference

  • Probability amplitudes can reinforce or cancel each other

Measurement

  • Measurement collapses the quantum state

Quantum Algorithms

Grover’s Algorithm

  • Unstructured search
  • Speedup: O(N)O(N)\begin{equation*} O(N) \rightarrow O(\sqrt{N}) \end{equation*}

Shor’s Algorithm

  • Integer factorization
  • Uses Quantum Fourier Transform (QFT)
  • Polynomial-time quantum algorithm
  • Breaks RSA cryptography

Quantum Complexity Classes

BPP

  • Classical probabilistic polynomial time
  • Correct with probability ≥ 2/3

BQP

  • Quantum polynomial time
  • Correct with probability ≥ 2/3

Key fact:

  • BQP ⊇ BPP
  • BQP ≠ BPP is NOT proven

Quantum Hardware (Trapped Ions / Atoms)

Qubit Encoding

  • Metastable electronic energy levels

Initialization

  • Optical pumping

Measurement

  • Cyclic transition
  • Detect photon emission

Two-Qubit Gates

  • Require strong interaction
  • Rydberg atoms
  • Dipole–dipole interaction
  • Rydberg blockade enables entanglement

DiVincenzo Criteria

A physical quantum computer must have:

  1. Scalable qubits
  2. State initialization
  3. Universal gate set
  4. Long coherence time
  5. Reliable measurement

Practical View

  • Quantum computers will not replace classical computers
  • They act as accelerators for special problems
    • Factoring
    • Search
    • Quantum simulation
    • Quantum machine learning (potentially)