2 Continuity of Functions
2.1 Cardinality of Sets
Cardinality of Sets
Let N ∗ \mathbb{N}^* N ∗ be the set of all positive integers, and
N n = { 1 , 2 , ⋯ , n } . \begin{equation*}
N_n = \{1, 2, \cdots, n\}.
\end{equation*} N n = { 1 , 2 , ⋯ , n } .
(1) \text{(1)}\quad (1) If there exists a positive integer n n n such that set A ∼ N n A \sim N_n A ∼ N n , then A A A is called a finite set . The empty set is also considered a finite set.
(2) \text{(2)}\quad (2) If set A A A is not a finite set, then A A A is called an infinite set .
(3) \text{(3)}\quad (3) If A ∼ N ∗ A \sim \mathbb{N}^* A ∼ N ∗ , then A A A is called a countable set .
(4) \text{(4)}\quad (4) If A A A is neither a finite set nor a countable set, then A A A is called an uncountable set .
(5) \text{(5)}\quad (5) If A A A is a finite set or A A A is a countable set, then A A A is called at most countable .
Theorem 2.1. Every infinite subset of a countable set A A A is a countable set.
Theorem 2.2. Let { E n } \{E_n\} { E n } (n = 1 , 2 , 3 , ⋯ n=1, 2, 3, \cdots n = 1 , 2 , 3 , ⋯ ) be a sequence of at most countable sets. Let
S = ⋃ n = 1 ∞ E n , \begin{equation*}
S = \bigcup_{n=1}^{\infty} E_n,
\end{equation*} S = n = 1 ⋃ ∞ E n ,
then S S S is an at most countable set.
2.2 Elementary Functions
Constant Function
f ( x ) = c , c ∈ R . \begin{equation*}
f(x) = c, \quad c \in \mathbb{R}.
\end{equation*} f ( x ) = c , c ∈ R .
Domain: R \mathbb{R} R .
Range: { c } \{c \} { c } .
Identity Function
f ( x ) = x . \begin{equation*}
f(x) = x.
\end{equation*} f ( x ) = x .
Domain: R \mathbb{R} R .
Range: R \mathbb{R} R .
Exponential Function
f ( x ) = a x , a > 0 , a ≠ 1. \begin{equation*}
f(x) = a^x, \quad a>0,\; a\neq1.
\end{equation*} f ( x ) = a x , a > 0 , a = 1.
Domain: R \mathbb{R} R .
Range: ( 0 , + ∞ ) (0, +\infty) ( 0 , + ∞ ) .
Special case: f ( x ) = e x f(x) = e^x f ( x ) = e x is the natural exponential function.
Logarithmic Function
f ( x ) = log a x , a > 0 , a ≠ 1. \begin{equation*}
f(x) = \log_a x, \quad a>0,\; a\neq1.
\end{equation*} f ( x ) = log a x , a > 0 , a = 1.
Domain: ( 0 , + ∞ ) (0, +\infty) ( 0 , + ∞ ) .
Range: R \mathbb{R} R .
Special case: f ( x ) = ln x = log e x f(x) = \ln x = \log_e x f ( x ) = ln x = log e x .
Inverse: ( log a x ) − 1 = a x . (\log_a x)^{-1} = a^x. ( log a x ) − 1 = a x .
Power Function
f ( x ) = x a = e a ln x , a ∈ R . \begin{equation*}
f(x) = x^a = e ^ {a \ln x}, \quad a \in \mathbb{R}.
\end{equation*} f ( x ) = x a = e a l n x , a ∈ R .
Domain: ( 0 , + ∞ ) (0, +\infty) ( 0 , + ∞ ) .
Range: ( 0 , + ∞ ) (0, +\infty) ( 0 , + ∞ ) .
Typical examples: x 2 , x 3 , x , 1 x x^2,\; x^3,\; \sqrt{x},\; \dfrac{1}{x} x 2 , x 3 , x , x 1 .
Trigonometric Function
sin x , cos x , tan x = sin x cos x , cot x = cos x sin x , sec x = 1 cos x , csc x = 1 sin x . \begin{equation*}
\sin x,\; \cos x,\; \tan x = \frac{\sin x}{\cos x},\;
\cot x = \frac{\cos x}{\sin x},\;
\sec x = \frac{1}{\cos x},\;
\csc x = \frac{1}{\sin x}.
\end{equation*} sin x , cos x , tan x = cos x sin x , cot x = sin x cos x , sec x = cos x 1 , csc x = sin x 1 .
Function Domain Range sin x \sin x sin x R \mathbb{R} R [ − 1 , 1 ] [-1,1] [ − 1 , 1 ] cos x \cos x cos x R \mathbb{R} R [ − 1 , 1 ] [-1,1] [ − 1 , 1 ] tan x \tan x tan x x ≠ π / 2 + k π x\neq \pi/2 + k\pi x = π /2 + kπ R \mathbb{R} R
Hyperbolic Function
sinh x = e x − e − x 2 , cosh x = e x + e − x 2 , tanh x = sinh x cosh x = e x − e − x e x + e − x . \begin{equation*}
\sinh x = \frac{e^x - e^{-x}}{2},
\qquad
\cosh x = \frac{e^x + e^{-x}}{2},
\qquad
\tanh x = \frac{\sinh x}{\cosh x}
= \frac{e^x - e^{-x}}{e^x + e^{-x}}.
\end{equation*} sinh x = 2 e x − e − x , cosh x = 2 e x + e − x , tanh x = cosh x sinh x = e x + e − x e x − e − x .
Function Domain Range sinh x \sinh x sinh x R \mathbb{R} R R \mathbb{R} R cosh x \cosh x cosh x R \mathbb{R} R [ 1 , + ∞ ) [1,\,+\infty) [ 1 , + ∞ ) tanh x \tanh x tanh x R \mathbb{R} R ( − 1 , 1 ) (-1,\,1) ( − 1 , 1 )
Theorems
sin ( A ± B ) = sin A cos B ± cos A sin B \sin(A\pm B)=\sin A\cos B\pm\cos A\sin B\\ sin ( A ± B ) = sin A cos B ± cos A sin B .
cos ( A ± B ) = cos A cos B ∓ sin A sin B \cos(A\pm B)=\cos A\cos B\mp\sin A\sin B\\ cos ( A ± B ) = cos A cos B ∓ sin A sin B .
tan ( A ± B ) = tan A ± tan B 1 ∓ tan A tan B . \tan(A\pm B)=\frac{\tan A\pm\tan B}{1\mp\tan A\tan B}. tan ( A ± B ) = 1 ∓ t a n A t a n B t a n A ± t a n B .
sin ( 2 A ) = 2 sin A cos A \sin(2A)=2\sin A\cos A sin ( 2 A ) = 2 sin A cos A .
cos ( 2 A ) = cos 2 A − sin 2 A = 2 cos 2 A − 1 = 1 − 2 sin 2 A \cos(2A)=\cos^2A-\sin^2A=2\cos^2A-1=1-2\sin^2A cos ( 2 A ) = cos 2 A − sin 2 A = 2 cos 2 A − 1 = 1 − 2 sin 2 A .
tan ( 2 A ) = 2 tan A 1 − tan 2 A \tan(2A)=\frac{2\tan A}{1-\tan^2A} tan ( 2 A ) = 1 − t a n 2 A 2 t a n A .
sin A + sin B = 2 sin A + B 2 cos A − B 2 \sin A+\sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2} sin A + sin B = 2 sin 2 A + B cos 2 A − B .
sin A − sin B = 2 cos A + B 2 sin A − B 2 \sin A-\sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2} sin A − sin B = 2 cos 2 A + B sin 2 A − B .
cos A + cos B = 2 cos A + B 2 cos A − B 2 \cos A+\cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2} cos A + cos B = 2 cos 2 A + B cos 2 A − B .
cos A − cos B = − 2 sin A + B 2 sin A − B 2 \cos A-\cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2} cos A − cos B = − 2 sin 2 A + B sin 2 A − B .
sin A sin B = 1 2 [ cos ( A − B ) − cos ( A + B ) ] \sin A\sin B = \tfrac{1}{2}\big[\cos(A-B)-\cos(A+B)\big] sin A sin B = 2 1 [ cos ( A − B ) − cos ( A + B ) ] .
cos A cos B = 1 2 [ cos ( A − B ) + cos ( A + B ) ] \cos A\cos B = \tfrac{1}{2}\big[\cos(A-B)+\cos(A+B)\big] cos A cos B = 2 1 [ cos ( A − B ) + cos ( A + B ) ] .
sin A cos B = 1 2 [ sin ( A + B ) + sin ( A − B ) ] \sin A\cos B = \tfrac{1}{2}\big[\sin(A+B)+\sin(A-B)\big] sin A cos B = 2 1 [ sin ( A + B ) + sin ( A − B ) ] .
For angles θ \theta θ in the interval ( 0 , π 2 ) : (0,\tfrac{\pi}{2}): ( 0 , 2 π ) : sin θ < θ < tan θ \sin\theta < \theta < \tan\theta sin θ < θ < tan θ .
sin ( 2 x ) = 2 sin x cos x \sin(2x) = 2 \sin x \cos x sin ( 2 x ) = 2 sin x cos x .
cos ( 2 x ) = cos 2 x − sin 2 x = 2 cos 2 x − 1 = 1 − 2 sin 2 x \cos(2x) = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x cos ( 2 x ) = cos 2 x − sin 2 x = 2 cos 2 x − 1 = 1 − 2 sin 2 x .
sinh ( 2 x ) = 2 sinh x cosh x \sinh(2x) = 2 \sinh x \cosh x sinh ( 2 x ) = 2 sinh x cosh x .
cosh ( 2 x ) = cosh 2 x + sinh 2 x = 2 cosh 2 x − 1 = 1 + 2 sinh 2 x \cosh(2x) = \cosh^2 x + \sinh^2 x = 2\cosh^2 x - 1 = 1 + 2\sinh^2 x cosh ( 2 x ) = cosh 2 x + sinh 2 x = 2 cosh 2 x − 1 = 1 + 2 sinh 2 x .
asinh ( x ) = ln ( x + x 2 + 1 ) \operatorname{asinh}(x) = \ln\!\left(x + \sqrt{x^2 + 1}\right) asinh ( x ) = ln ( x + x 2 + 1 ) .
acosh ( x ) = ln ( x + x − 1 x + 1 ) \operatorname{acosh}(x) = \ln\!\left(x + \sqrt{x - 1}\sqrt{x + 1}\right) acosh ( x ) = ln ( x + x − 1 x + 1 ) .
Inverse Trigonometric Function
arcsin x , arccos x , arctan x . \begin{equation*}
\arcsin x,\quad \arccos x,\quad \arctan x.
\end{equation*} arcsin x , arccos x , arctan x .
Function Domain Range arcsin x \arcsin x arcsin x [ − 1 , 1 ] [-1,1] [ − 1 , 1 ] [ − π / 2 , π / 2 ] [-\pi/2,\ \pi/2] [ − π /2 , π /2 ] arccos x \arccos x arccos x [ − 1 , 1 ] [-1,1] [ − 1 , 1 ] [ 0 , π ] [0,\ \pi] [ 0 , π ] arctan x \arctan x arctan x R \mathbb{R} R ( − π / 2 , π / 2 ) (-\pi/2,\ \pi/2) ( − π /2 , π /2 )
Elementary Function
If f , g f,g f , g are elementary functions, then
f + g , f − g , f ⋅ g , f g ( g ≠ 0 ) , f ∘ g \begin{equation*}
f+g,\quad f-g,\quad f\cdot g,\quad \frac{f}{g}\;(g\neq0),\quad f\circ g
\end{equation*} f + g , f − g , f ⋅ g , g f ( g = 0 ) , f ∘ g
are all elementary functions (in their domains of definition).
2.3 Limit of Functions
Limits of Function
A real number x 0 x_0 x 0 is called an accumulation point (or limit point ) of a set I ⊆ R I \subseteq \mathbb{R} I ⊆ R if:
∀ ε > 0 , ∃ x ∈ I such that 0 < ∣ x − x 0 ∣ < ε . \begin{equation*}
\forall \varepsilon > 0,\; \exists x \in I \text{ such that } 0 < |x - x_0| < \varepsilon.
\end{equation*} ∀ ε > 0 , ∃ x ∈ I such that 0 < ∣ x − x 0 ∣ < ε .
Let f : I → R f : I \to \mathbb{R} f : I → R and let x 0 x_0 x 0 be an accumulation point of I I I . We say that the limit of f ( x ) f(x) f ( x ) as x x x approaches x 0 x_0 x 0 is A ∈ R A \in \mathbb{R} A ∈ R , written as
lim x → x 0 f ( x ) = A . \begin{equation*}
\lim_{x \to x_0} f(x) = A.
\end{equation*} x → x 0 lim f ( x ) = A .
if and only if
∀ ε > 0 , ∃ δ > 0 such that ∀ x ∈ I , 0 < ∣ x − x 0 ∣ < δ ⇒ ∣ f ( x ) − A ∣ < ε . \begin{equation*}
\forall \varepsilon > 0,\; \exists \delta > 0 \text{ such that } \forall x \in I,\;
0 < |x - x_0| < \delta \Rightarrow |f(x) - A| < \varepsilon.
\end{equation*} ∀ ε > 0 , ∃ δ > 0 such that ∀ x ∈ I , 0 < ∣ x − x 0 ∣ < δ ⇒ ∣ f ( x ) − A ∣ < ε .
The right-hand limit of a function f f f at x 0 x_0 x 0 is denoted by
lim x → x 0 + f ( x ) = A , \begin{equation*}
\lim_{x \to x_0^+} f(x) = A,
\end{equation*} x → x 0 + lim f ( x ) = A ,
which means:
∀ ε > 0 , ∃ δ > 0 such that ∀ x ∈ I , x 0 < x < x 0 + δ ⇒ ∣ f ( x ) − A ∣ < ε . \begin{equation*}
\forall \varepsilon > 0,\; \exists \delta > 0 \text{ such that } \forall x \in I,\; x_0 < x < x_0 + \delta \Rightarrow |f(x) - A| < \varepsilon.
\end{equation*} ∀ ε > 0 , ∃ δ > 0 such that ∀ x ∈ I , x 0 < x < x 0 + δ ⇒ ∣ f ( x ) − A ∣ < ε .
Similarly, the left-hand limit is defined by
lim x → x 0 − f ( x ) = A . \begin{equation*}
\lim_{x \to x_0^-} f(x) = A.
\end{equation*} x → x 0 − lim f ( x ) = A .
Theorem 2.3. A necessary and sufficient condition for the function f f f to have a limit l l l at x 0 x_0 x 0 is that, for any sequence { x n ≠ x 0 : n = 1 , 2 , 3 , ⋯ } \{x_n \neq x_0 : n=1, 2, 3, \cdots\} { x n = x 0 : n = 1 , 2 , 3 , ⋯ } converging to x 0 x_0 x 0 , the sequence { f ( x n ) } \{f(x_n)\} { f ( x n )} has a limit l l l .
Theorem 2.4. Let lim x → x 0 f ( x ) \lim\limits_{x \to x_0} f(x) x → x 0 lim f ( x ) and lim x → x 0 g ( x ) \lim\limits_{x \to x_0} g(x) x → x 0 lim g ( x ) exist. Then:
(1) lim x → x 0 ( f ± g ) ( x ) = lim x → x 0 f ( x ) ± lim x → x 0 g ( x ) \text{(1)}\quad\lim\limits_{x \to x_0} (f \pm g)(x) = \lim\limits_{x \to x_0} f(x) \pm \lim\limits_{x \to x_0} g(x) (1) x → x 0 lim ( f ± g ) ( x ) = x → x 0 lim f ( x ) ± x → x 0 lim g ( x ) ;
(2) lim x → x 0 f g ( x ) = lim x → x 0 f ( x ) ⋅ lim x → x 0 g ( x ) \text{(2)}\quad\lim\limits_{x \to x_0} fg(x) = \lim\limits_{x \to x_0} f(x) \cdot \lim\limits_{x \to x_0} g(x) (2) x → x 0 lim f g ( x ) = x → x 0 lim f ( x ) ⋅ x → x 0 lim g ( x ) ;
(3) lim x → x 0 f g ( x ) = lim x → x 0 f ( x ) lim x → x 0 g ( x ) \text{(3)}\quad\lim\limits_{x \to x_0} \frac{f}{g}(x) = \frac{\lim\limits_{x \to x_0} f(x)}{\lim\limits_{x \to x_0} g(x)} (3) x → x 0 lim g f ( x ) = x → x 0 l i m g ( x ) x → x 0 l i m f ( x ) , where lim x → x 0 g ( x ) ≠ 0 \lim\limits_{x \to x_0} g(x) \neq 0 x → x 0 lim g ( x ) = 0 .
Neighborhood and Deleted Neighborhood
B δ ( x 0 ) = { x : ∣ x − x 0 ∣ < δ } , B δ ( x ˚ 0 ) = { x : 0 < ∣ x − x 0 ∣ < δ } . \begin{equation*}
B_\delta(x_0) = \{x : |x - x_0| < \delta\}, \quad B_\delta(\mathring{x}_0) = \{x : 0 < |x - x_0| < \delta\}.
\end{equation*} B δ ( x 0 ) = { x : ∣ x − x 0 ∣ < δ } , B δ ( x ˚ 0 ) = { x : 0 < ∣ x − x 0 ∣ < δ } .
We call B δ ( x 0 ) B_\delta(x_0) B δ ( x 0 ) the neighborhood of x 0 x_0 x 0 centered at x 0 x_0 x 0 with radius δ \delta δ (abbreviated as the neighborhood of x 0 x_0 x 0 ), and B δ ( x ˚ 0 ) B_\delta(\mathring{x}_0) B δ ( x ˚ 0 ) the deleted neighborhood of x 0 x_0 x 0 centered at x 0 x_0 x 0 with radius δ \delta δ (abbreviated as the deleted neighborhood of x 0 x_0 x 0 ).
Theorem 2.5. A necessary and sufficient condition for the function f f f to have a limit at x 0 x_0 x 0 is that for any given ε > 0 \varepsilon > 0 ε > 0 , there exists a δ > 0 \delta > 0 δ > 0 such that for any x 1 , x 2 ∈ B δ ( x ˚ 0 ) x_1, x_2 \in B_\delta(\mathring{x}_0) x 1 , x 2 ∈ B δ ( x ˚ 0 ) , we have ∣ f ( x 1 ) − f ( x 2 ) ∣ < ε |f(x_1) - f(x_2)| < \varepsilon ∣ f ( x 1 ) − f ( x 2 ) ∣ < ε .
Theorem 2.6. Let lim x → x 0 f ( x ) = l \lim\limits_{x \to x_0} f(x) = l x → x 0 lim f ( x ) = l and lim t → t 0 g ( t ) = x 0 \lim\limits_{t \to t_0} g(t) = x_0 t → t 0 lim g ( t ) = x 0 . If in some neighborhood B η ( t 0 ) B_{\eta}(t_0) B η ( t 0 ) of t 0 t_0 t 0 , g ( t ) ≠ x 0 g(t) \neq x_0 g ( t ) = x 0 , then
lim t → t 0 f ( g ( t ) ) = l . \begin{equation*}
\lim_{t \to t_0} f(g(t)) = l.
\end{equation*} t → t 0 lim f ( g ( t )) = l .
2.4 Infinite Limits of Functions
Limit at Infinity
lim x → + ∞ f ( x ) = A \begin{equation*}
\lim_{x \to +\infty} f(x) = A
\end{equation*} x → + ∞ lim f ( x ) = A
means that
∀ ε > 0 , ∃ M > 0 such that ∀ x ∈ I , x > M ⇒ ∣ f ( x ) − A ∣ < ε . \begin{equation*}
\forall \varepsilon > 0,\; \exists M > 0 \text{ such that } \forall x \in I,\; x > M \Rightarrow |f(x) - A| < \varepsilon.
\end{equation*} ∀ ε > 0 , ∃ M > 0 such that ∀ x ∈ I , x > M ⇒ ∣ f ( x ) − A ∣ < ε .
Similarly,
lim x → − ∞ f ( x ) = A \begin{equation*}
\lim_{x \to -\infty} f(x) = A
\end{equation*} x → − ∞ lim f ( x ) = A
means
∀ ε > 0 , ∃ M > 0 such that ∀ x ∈ I , x < − M ⇒ ∣ f ( x ) − A ∣ < ε . \begin{equation*}
\forall \varepsilon > 0,\; \exists M > 0 \text{ such that } \forall x \in I,\; x < -M \Rightarrow |f(x) - A| < \varepsilon.
\end{equation*} ∀ ε > 0 , ∃ M > 0 such that ∀ x ∈ I , x < − M ⇒ ∣ f ( x ) − A ∣ < ε .
lim x → ∞ f ( x ) = A \begin{equation*}
\lim_{x \to \infty} f(x) = A
\end{equation*} x → ∞ lim f ( x ) = A
means
∀ ε > 0 , ∃ M > 0 such that ∀ x ∈ I , ∣ x ∣ > M ⇒ ∣ f ( x ) − A ∣ < ε . \begin{equation*}
\forall \varepsilon > 0,\; \exists M > 0 \text{ such that } \forall x \in I,\; |x| > M \Rightarrow |f(x) - A| < \varepsilon.
\end{equation*} ∀ ε > 0 , ∃ M > 0 such that ∀ x ∈ I , ∣ x ∣ > M ⇒ ∣ f ( x ) − A ∣ < ε .
Definition. Let c c c be one of x 0 , x 0 + , x 0 − , − ∞ , + ∞ , ∞ x_0,\; x_0^+,\; x_0^-,\; -\infty,\; +\infty,\; \infty x 0 , x 0 + , x 0 − , − ∞ , + ∞ , ∞ . The neighborhood and deleted neighborhood of c c c are defined as follows:
c c c Neighborhood of c c c Deleted neighborhood of c c c x 0 x_0 x 0 An open interval J J J containing x 0 x_0 x 0 J ∖ { x 0 } J \setminus \{x_0\} J ∖ { x 0 } x 0 + x_0^+ x 0 + [ x 0 , x 0 + δ ) [x_0,\, x_0+\delta) [ x 0 , x 0 + δ ) ( x 0 , x 0 + δ ) (x_0,\, x_0+\delta) ( x 0 , x 0 + δ ) x 0 − x_0^- x 0 − ( x 0 − δ , x 0 ] (x_0-\delta,\, x_0] ( x 0 − δ , x 0 ] ( x 0 − δ , x 0 ) (x_0-\delta,\, x_0) ( x 0 − δ , x 0 ) − ∞ -\infty − ∞ ( − ∞ , b ) (-\infty,\, b) ( − ∞ , b ) ( − ∞ , b ) (-\infty,\, b) ( − ∞ , b ) + ∞ +\infty + ∞ ( a , + ∞ ) (a,\, +\infty) ( a , + ∞ ) ( a , + ∞ ) (a,\, +\infty) ( a , + ∞ ) ∞ \infty ∞ ( − ∞ , b ) ∪ ( a , + ∞ ) (-\infty,\, b)\,\cup\,(a,\, +\infty) ( − ∞ , b ) ∪ ( a , + ∞ ) ( − ∞ , b ) ∪ ( a , + ∞ ) (-\infty,\, b)\,\cup\,(a,\, +\infty) ( − ∞ , b ) ∪ ( a , + ∞ )
General Definition of Limit
Let c c c be one of x 0 , x 0 + , x 0 − , − ∞ , + ∞ , ∞ x_0,\; x_0^+,\; x_0^-,\; -\infty,\; +\infty,\; \infty x 0 , x 0 + , x 0 − , − ∞ , + ∞ , ∞ , and let A A A be a real number or one of − ∞ , + ∞ , ∞ -\infty,\; +\infty,\; \infty − ∞ , + ∞ , ∞ . We say that lim x → c f ( x ) = A \lim\limits_{x \to c} f(x) = A x → c lim f ( x ) = A iff:
For every neighborhood V V V of A A A , there exists a deleted neighborhood W W W of c c c such that for all x ∈ I ∩ W x \in I \cap W x ∈ I ∩ W , we have f ( x ) ∈ V f(x) \in V f ( x ) ∈ V .
Infinite Quantity
When x → c x \to c x → c , if f ( x ) f(x) f ( x ) grows without bound, we say f ( x ) f(x) f ( x ) is an infinite quantity (or positive/negative infinite quantity ).
If
lim x → c f ( x ) = ∞ (i.e. lim x → c f ( x ) = + ∞ or lim x → c f ( x ) = − ∞ ) , \begin{equation*}
\lim_{x \to c} f(x) = \infty
\quad \text{(i.e. } \lim_{x \to c} f(x) = +\infty \text{ or } \lim_{x \to c} f(x) = -\infty \text{)},
\end{equation*} x → c lim f ( x ) = ∞ (i.e. x → c lim f ( x ) = + ∞ or x → c lim f ( x ) = − ∞ ) ,
then f ( x ) f(x) f ( x ) diverges to infinity as x x x approaches c c c .
Theorem 2.7.
lim x → ∞ ( 1 + 1 x ) x = e . \begin{equation*}
\lim_{x \to \infty} \left( 1 + \frac{1}{x} \right)^x = e.
\end{equation*} x → ∞ lim ( 1 + x 1 ) x = e .
2.5 Big O and Small o
Big O
When x → c x \to c x → c , if f ( x ) = O ( g ( x ) ) f(x) = O(g(x)) f ( x ) = O ( g ( x )) , it means:
There exists M > 0 M > 0 M > 0 and a deleted neighborhood W W W of c c c such that for all x ∈ I ∩ W x \in I \cap W x ∈ I ∩ W , we have ∣ f ( x ) ∣ ≤ M ∣ g ( x ) ∣ |f(x)| \le M |g(x)| ∣ f ( x ) ∣ ≤ M ∣ g ( x ) ∣ .
If f 1 = O ( g ) f_1 = O(g) f 1 = O ( g ) and f 2 = O ( g ) f_2 = O(g) f 2 = O ( g ) as x → c x \to c x → c , then f 1 + f 2 = O ( g ) . f_1 + f_2 = O(g). f 1 + f 2 = O ( g ) .
If f 1 = O ( g 1 ) f_1 = O(g_1) f 1 = O ( g 1 ) and f 2 = O ( g 2 ) f_2 = O(g_2) f 2 = O ( g 2 ) as x → c x \to c x → c , then f 1 f 2 = O ( g 1 g 2 ) . f_1 f_2 = O(g_1 g_2). f 1 f 2 = O ( g 1 g 2 ) .
Same Order
When x → c x \to c x → c , if f f f and g g g are of the same order , denoted f = Θ ( g ) , x → c , f = \Theta(g), \quad x \to c, f = Θ ( g ) , x → c , it means:
f = O ( g ) and g = O ( f ) , \begin{equation*}
f = O(g) \text{ and } g = O(f),
\end{equation*} f = O ( g ) and g = O ( f ) ,
that is, there exist M > 0 M > 0 M > 0 and a deleted neighborhood W W W of c c c such that for all x ∈ W x \in W x ∈ W ,
1 M ∣ g ( x ) ∣ ≤ ∣ f ( x ) ∣ ≤ M ∣ g ( x ) ∣ . \begin{equation*}
\frac{1}{M} |g(x)| \le |f(x)| \le M |g(x)|.
\end{equation*} M 1 ∣ g ( x ) ∣ ≤ ∣ f ( x ) ∣ ≤ M ∣ g ( x ) ∣.
Small o
When x → c x \to c x → c , if f ( x ) = o ( g ( x ) ) f(x) = o(g(x)) f ( x ) = o ( g ( x )) , it means:
For every ε > 0 \varepsilon > 0 ε > 0 , there exists a deleted neighborhood W W W of c c c such that for all x ∈ W x \in W x ∈ W ,
∣ f ( x ) ∣ ≤ ε ∣ g ( x ) ∣ . \begin{equation*}
|f(x)| \le \varepsilon |g(x)|.
\end{equation*} ∣ f ( x ) ∣ ≤ ε ∣ g ( x ) ∣.
If f 1 = o ( g ) f_1 = o(g) f 1 = o ( g ) and f 2 = o ( g ) f_2 = o(g) f 2 = o ( g ) as x → c x \to c x → c , then f 1 + f 2 = o ( g ) . f_1 + f_2 = o(g). f 1 + f 2 = o ( g ) .
If f 1 = o ( g 1 ) f_1 = o(g_1) f 1 = o ( g 1 ) and f 2 = O ( g 2 ) f_2 = O(g_2) f 2 = O ( g 2 ) as x → c x \to c x → c , then f 1 f 2 = o ( g 1 g 2 ) . f_1 f_2 = o(g_1 g_2). f 1 f 2 = o ( g 1 g 2 ) .
Asymptotic Equivalence
When x → c x \to c x → c , functions f f f and g g g are said to be asymptotically equivalent , written as f ∼ g f \sim g f ∼ g , if
f = g + o ( g ) . \begin{equation*}
f = g + o(g).
\end{equation*} f = g + o ( g ) .
That is, for every ε > 0 \varepsilon > 0 ε > 0 , there exists a deleted neighborhood W W W of c c c such that for all x ∈ W x \in W x ∈ W ,
∣ f ( x ) − g ( x ) ∣ ≤ ε ∣ g ( x ) ∣ . \begin{equation*}
|f(x) - g(x)| \le \varepsilon |g(x)|.
\end{equation*} ∣ f ( x ) − g ( x ) ∣ ≤ ε ∣ g ( x ) ∣.
Theorem 2.8. If x → c x \to c x → c , and f + o ( f ) = G + o ( g ) , G = O ( g ) , f + o(f) = G + o(g), \quad G = O(g), f + o ( f ) = G + o ( g ) , G = O ( g ) , then f = G + o ( g ) f = G + o(g) f = G + o ( g ) .
Corollary 1. If x → c x \to c x → c , and f f f is equivalent to g g g , then g g g is equivalent to f f f .
Corollary 2. If x → c x \to c x → c , and f f f is equivalent to g g g , and g g g is equivalent to h h h , then f f f is equivalent to h h h .
2.6 Continuous Functions
Continuous Function
Let f : [ a , b ] → R f: [a, b] \to \mathbf{R} f : [ a , b ] → R . We say that the function f f f is continuous at the point x 0 ∈ ( a , b ) x_0 \in (a, b) x 0 ∈ ( a , b ) if
lim x → x 0 f ( x ) = f ( x 0 ) . \begin{equation*}
\lim_{x \to x_0} f(x) = f(x_0).
\end{equation*} x → x 0 lim f ( x ) = f ( x 0 ) .
That is to say, for any given ε > 0 \varepsilon > 0 ε > 0 , there exists a suitable δ > 0 \delta > 0 δ > 0 , such that when ∣ x − x 0 ∣ < δ |x - x_0| < \delta ∣ x − x 0 ∣ < δ , we have
∣ f ( x ) − f ( x 0 ) ∣ < ε . \begin{equation*}
|f(x) - f(x_0)| < \varepsilon.
\end{equation*} ∣ f ( x ) − f ( x 0 ) ∣ < ε .
We say that f f f is right-continuous at x 0 x_0 x 0 if ∀ ε > 0 \forall \varepsilon > 0 ∀ ε > 0 , ∃ δ > 0 \exists \delta > 0 ∃ δ > 0 such that for all x ∈ I x \in I x ∈ I .
x 0 ≤ x < x 0 + δ ⇒ ∣ f ( x ) − f ( x 0 ) ∣ < ε . \begin{equation*}
x_0 \le x < x_0 + \delta \;\Rightarrow\; |f(x) - f(x_0)| < \varepsilon.
\end{equation*} x 0 ≤ x < x 0 + δ ⇒ ∣ f ( x ) − f ( x 0 ) ∣ < ε .
Similarly, f f f is left-continuous at x 0 x_0 x 0 if ∀ ε > 0 \forall \varepsilon > 0 ∀ ε > 0 , ∃ δ > 0 \exists \delta > 0 ∃ δ > 0 such that for all x ∈ I x \in I x ∈ I .
x 0 − δ < x ≤ x 0 ⇒ ∣ f ( x ) − f ( x 0 ) ∣ < ε . \begin{equation*}
x_0 - \delta < x \le x_0 \;\Rightarrow\; |f(x) - f(x_0)| < \varepsilon.
\end{equation*} x 0 − δ < x ≤ x 0 ⇒ ∣ f ( x ) − f ( x 0 ) ∣ < ε .
f is continuous at x 0 ⟺ f is both right-continuous and left-continuous at x 0 . \begin{equation*}
f \text{ is continuous at } x_0
\;\Longleftrightarrow\;
f \text{ is both right-continuous and left-continuous at } x_0.
\end{equation*} f is continuous at x 0 ⟺ f is both right-continuous and left-continuous at x 0 .
Theorem 2.9. If both f f f and g g g are continuous at x 0 x_0 x 0 , then
f ± g and f g are continuous at x 0 . \begin{equation*}
f \pm g \text{ and } f g \text{ are continuous at } x_0.
\end{equation*} f ± g and f g are continuous at x 0 .
Moreover, if g ( x 0 ) ≠ 0 g(x_0) \neq 0 g ( x 0 ) = 0 , then
f g is continuous at x 0 . \begin{equation*}
\dfrac{f}{g} \text{ is continuous at } x_0.
\end{equation*} g f is continuous at x 0 .
Theorem 2.10. Let f f f and g g g be functions such that:
{ f is continuous at x 0 , g is continuous at y 0 = f ( x 0 ) , \begin{equation*}
\begin{cases}
f \text{ is continuous at } x_0, \\
g \text{ is continuous at } y_0 = f(x_0),
\end{cases}
\end{equation*} { f is continuous at x 0 , g is continuous at y 0 = f ( x 0 ) ,
then the composite function g ∘ f g \circ f g ∘ f is continuous at x 0 x_0 x 0 .
Theorem 2.11. Let I , J ⊆ R I, J \subseteq \mathbb{R} I , J ⊆ R be intervals , and let f : I → J f: I \to J f : I → J be monotone and onto . Then f f f is a continuous function .
Removable Discontinuity
A point x 0 x_0 x 0 is called a removable discontinuity of a function f f f if:
(1) x 0 \text{(1)}\quad x_0 (1) x 0 is a limit point of the domain I I I of f f f , and the limit
lim x → x 0 f ( x ) \begin{equation*}
\lim_{x \to x_0} f(x)
\end{equation*} x → x 0 lim f ( x )
exists;
(2) f \text{(2)}\quad f (2) f is either undefined at x 0 x_0 x 0 , or
f ( x 0 ) ≠ lim x → x 0 f ( x ) . \begin{equation*}
f(x_0) \ne \lim_{x \to x_0} f(x).
\end{equation*} f ( x 0 ) = x → x 0 lim f ( x ) .
In other words, f f f is not continuous at x 0 x_0 x 0 , but it can be made continuous by appropriately redefining the value f ( x 0 ) f(x_0) f ( x 0 ) .
Jump Discontinuity
A point x 0 x_0 x 0 is called a jump discontinuity if both one-sided limits exist but are not equal :
lim x → x 0 − f ( x ) and lim x → x 0 + f ( x ) . \begin{equation*}
\lim_{x \to x_0^-} f(x) \quad \text{and} \quad \lim_{x \to x_0^+} f(x).
\end{equation*} x → x 0 − lim f ( x ) and x → x 0 + lim f ( x ) .
Classification
A function f f f is said to be uniformly continuous on a set K K K , if for every ε > 0 \varepsilon > 0 ε > 0 , there exists a δ ε > 0 \delta_\varepsilon > 0 δ ε > 0 such that
∀ x , y ∈ K , ∣ x − y ∣ < δ ε ⟹ ∣ f ( x ) − f ( y ) ∣ < ε . \begin{equation*}
\forall x, y \in K, \quad |x - y| < \delta_\varepsilon \implies |f(x) - f(y)| < \varepsilon.
\end{equation*} ∀ x , y ∈ K , ∣ x − y ∣ < δ ε ⟹ ∣ f ( x ) − f ( y ) ∣ < ε .
The function f f f is not uniformly continuous on a set K K K if and only if there exists an ε 0 > 0 \varepsilon_0 > 0 ε 0 > 0 such that for every n ∈ N ∗ n \in \mathbb{N}^* n ∈ N ∗ , one can find two points in K K K , denoted as s n s_n s n and t n t_n t n , such that although ∣ s n − t n ∣ < 1 / n |s_n - t_n| < 1/n ∣ s n − t n ∣ < 1/ n , we have
∣ f ( s n ) − f ( t n ) ∣ ⩾ ε 0 . \begin{equation*}
|f(s_n) - f(t_n)| \geqslant \varepsilon_0.
\end{equation*} ∣ f ( s n ) − f ( t n ) ∣ ⩾ ε 0 .
2.8 Properties of Continuous Functions on Bounded Closed Intervals
Theorem 2.12. Let the function f f f be continuous on [ a , b ] [a, b] [ a , b ] , then f f f must be uniformly continuous on [ a , b ] [a, b] [ a , b ] .
Theorem 2.13. A continuous function on a bounded closed interval must be bounded on that interval.
Theorem 2.14. Let f f f be continuous on [ a , b ] [a, b] [ a , b ] . Let
M = sup x ∈ [ a , b ] f ( x ) , m = inf x ∈ [ a , b ] f ( x ) , \begin{equation*}
M = \sup_{x \in [a, b]} f(x), \quad m = \inf_{x \in [a, b]} f(x),
\end{equation*} M = x ∈ [ a , b ] sup f ( x ) , m = x ∈ [ a , b ] inf f ( x ) ,
then there must exist x ∗ , x ∗ ∈ [ a , b ] x^*, x_* \in [a, b] x ∗ , x ∗ ∈ [ a , b ] , such that
f ( x ∗ ) = M , f ( x ∗ ) = m . \begin{equation*}
f(x^*) = M, \quad f(x_*) = m.
\end{equation*} f ( x ∗ ) = M , f ( x ∗ ) = m .
Theorem 2.15. If f f f is continuous on the interval [ a , b ] [a,b] [ a , b ] and f ( a ) ≠ f ( b ) f(a) \ne f(b) f ( a ) = f ( b ) , then every real number between f ( a ) f(a) f ( a ) and f ( b ) f(b) f ( b ) is attained as a function value of f f f on [ a , b ] [a,b] [ a , b ] .