3 Derivatives and Differentials of Functions
3.1 Definition and Calculation of Derivatives
Differential
A point x 0 x_0 x 0 is called an interior point of I I I , if there exists δ > 0 \delta > 0 δ > 0 such that
∀ x , ∣ x − x 0 ∣ < δ ⇒ x ∈ I . \begin{equation*}
\forall x,\ |x - x_0| < \delta \Rightarrow x \in I.
\end{equation*} ∀ x , ∣ x − x 0 ∣ < δ ⇒ x ∈ I .
Let x 0 x_0 x 0 be an interior point of I I I . A function f : I → R f: I \to \mathbb{R} f : I → R is said to be differentiable at x 0 x_0 x 0 if there exists a linear function L : R → R L: \mathbb{R} \to \mathbb{R} L : R → R such that
f ( x 0 + h ) = f ( x 0 ) + L ( h ) + o ( h ) , h → 0. \begin{equation*}
f(x_0 + h) = f(x_0) + L(h) + o(h), \quad h \to 0.
\end{equation*} f ( x 0 + h ) = f ( x 0 ) + L ( h ) + o ( h ) , h → 0.
In this case, L L L is called the differential of f f f at x 0 x_0 x 0 , denoted by d f ( x 0 ) df(x_0) df ( x 0 ) .
Derivative
For a one-variable function, the differential d f ( x 0 ) df(x_0) df ( x 0 ) is a linear function , that is, a proportional function whose proportionality constant is denoted by f ′ ( x 0 ) f'(x_0) f ′ ( x 0 ) . This f ′ ( x 0 ) f'(x_0) f ′ ( x 0 ) is called the derivative of f f f at x 0 x_0 x 0 .
d f ( x 0 ) ( h ) = f ′ ( x 0 ) h . \begin{equation*}
df(x_0)(h) = f'(x_0)h.
\end{equation*} df ( x 0 ) ( h ) = f ′ ( x 0 ) h .
lim h → 0 f ( x 0 + h ) − f ( x 0 ) − f ′ ( x 0 ) h h = lim h → 0 o ( h ) h = 0. \begin{equation*}
\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - f'(x_0)h}{h}
= \lim_{h \to 0} \frac{o(h)}{h} = 0.
\end{equation*} h → 0 lim h f ( x 0 + h ) − f ( x 0 ) − f ′ ( x 0 ) h = h → 0 lim h o ( h ) = 0.
The derivative is defined as:
f ′ ( x 0 ) = lim h → 0 f ( x 0 + h ) − f ( x 0 ) h . \begin{equation*}
f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.
\end{equation*} f ′ ( x 0 ) = h → 0 lim h f ( x 0 + h ) − f ( x 0 ) .
If this limit exists, we say that f f f is differentiable at x 0 x_0 x 0 .
Traditional notation: Let Δ x = h \Delta x = h Δ x = h , Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y = f(x_0 + \Delta x) - f(x_0) Δ y = f ( x 0 + Δ x ) − f ( x 0 ) , then
f ′ ( x 0 ) = lim h → 0 Δ y Δ x = d y d x ∣ x 0 . \begin{equation*}
f'(x_0) = \lim_{h \to 0} \frac{\Delta y}{\Delta x}
= \left. \frac{dy}{dx} \right|_{x_0}.
\end{equation*} f ′ ( x 0 ) = h → 0 lim Δ x Δ y = d x d y x 0 .
Theorem 3.1. Let f , g f, g f , g be differentiable at x 0 x_0 x 0 . Then f ± g f \pm g f ± g and f g fg f g are differentiable at x 0 x_0 x 0 , and
( f ± g ) ′ ( x 0 ) = f ′ ( x 0 ) ± g ′ ( x 0 ) , \begin{equation*}
(f \pm g)'(x_0) = f'(x_0) \pm g'(x_0),
\end{equation*} ( f ± g ) ′ ( x 0 ) = f ′ ( x 0 ) ± g ′ ( x 0 ) ,
( f g ) ′ ( x 0 ) = g ( x 0 ) f ′ ( x 0 ) + f ( x 0 ) g ′ ( x 0 ) . \begin{equation*}
(fg)'(x_0) = g(x_0) f'(x_0) + f(x_0) g'(x_0).
\end{equation*} ( f g ) ′ ( x 0 ) = g ( x 0 ) f ′ ( x 0 ) + f ( x 0 ) g ′ ( x 0 ) .
If g ( x 0 ) ≠ 0 g(x_0) \neq 0 g ( x 0 ) = 0 , then
( f g ) ′ ( x 0 ) = f ′ ( x 0 ) g ( x 0 ) − f ( x 0 ) g ′ ( x 0 ) [ g ( x 0 ) ] 2 . \begin{equation*}
\left( \frac{f}{g} \right)'(x_0)
= \frac{f'(x_0) g(x_0) - f(x_0) g'(x_0)}{[g(x_0)]^2}.
\end{equation*} ( g f ) ′ ( x 0 ) = [ g ( x 0 ) ] 2 f ′ ( x 0 ) g ( x 0 ) − f ( x 0 ) g ′ ( x 0 ) .
Theorem 3.2. Suppose f f f is differentiable at x 0 x_0 x 0 , and g g g is differentiable at y 0 = f ( x 0 ) y_0 = f(x_0) y 0 = f ( x 0 ) . Then the composite function g ∘ f g \circ f g ∘ f is differentiable at x 0 x_0 x 0 , and
d ( g ∘ f ) ( x 0 ) = d g ( y 0 ) ∘ d f ( x 0 ) . \begin{equation*}
\mathrm{d}(g \circ f)(x_0) = \mathrm{d}g(y_0) \circ \mathrm{d}f(x_0).
\end{equation*} d ( g ∘ f ) ( x 0 ) = d g ( y 0 ) ∘ d f ( x 0 ) .
Equivalently,
( g ∘ f ) ′ ( x 0 ) = g ′ ( y 0 ) ⋅ f ′ ( x 0 ) = g ′ ( f ( x 0 ) ) f ′ ( x 0 ) . \begin{equation*}
(g \circ f)'(x_0) = g'(y_0) \cdot f'(x_0) = g'(f(x_0)) f'(x_0).
\end{equation*} ( g ∘ f ) ′ ( x 0 ) = g ′ ( y 0 ) ⋅ f ′ ( x 0 ) = g ′ ( f ( x 0 )) f ′ ( x 0 ) .
Theorem 3.3. Suppose f f f has a continuous inverse function. If f f f is differentiable at x 0 x_0 x 0 and f ′ ( x 0 ) ≠ 0 f'(x_0) \neq 0 f ′ ( x 0 ) = 0 , then f − 1 f^{-1} f − 1 is differentiable at y 0 = f ( x 0 ) y_0 = f(x_0) y 0 = f ( x 0 ) , and
d ( f − 1 ) ( y 0 ) = ( d f ( x 0 ) ) − 1 . \begin{equation*}
\mathrm{d}(f^{-1})(y_0) = (\mathrm{d}f(x_0))^{-1}.
\end{equation*} d ( f − 1 ) ( y 0 ) = ( d f ( x 0 ) ) − 1 .
Equivalently,
( f − 1 ) ′ ( y 0 ) = 1 f ′ ( x 0 ) . \begin{equation*}
(f^{-1})'(y_0) = \frac{1}{f'(x_0)}.
\end{equation*} ( f − 1 ) ′ ( y 0 ) = f ′ ( x 0 ) 1 .
Examples
d ( x n ) = n x n − 1 d x ( n ∈ R ) d(x^n)=n x^{n-1}dx\qquad(n\in\mathbb{R}) d ( x n ) = n x n − 1 d x ( n ∈ R ) .
d ( e x ) = e x d x , d ( ln x ) = 1 x d x ( x > 0 ) d(e^x)=e^x\,dx,\qquad d(\ln x)=\frac{1}{x}dx\ (x>0) d ( e x ) = e x d x , d ( ln x ) = x 1 d x ( x > 0 ) .
d ( a x ) = a x ln a d x , d ( log a x ) = 1 x ln a d x ( x > 0 ) d(a^x)=a^x\ln a\,dx,\qquad
d(\log_a x)=\frac{1}{x\ln a}dx\ (x>0) d ( a x ) = a x ln a d x , d ( log a x ) = x l n a 1 d x ( x > 0 ) .
d ( e u ) = e u u ′ d x , d ( ln u ) = u ′ u d x d(e^{u})=e^{u}u'dx,\qquad d(\ln u)=\frac{u'}{u}dx d ( e u ) = e u u ′ d x , d ( ln u ) = u u ′ d x .
d ( sin x ) = cos x d x , d ( cos x ) = − sin x d x , d ( tan x ) = sec 2 x d x d(\sin x)=\cos x\,dx,\quad
d(\cos x)=-\sin x\,dx,\quad
d(\tan x)=\sec^2 x\,dx d ( sin x ) = cos x d x , d ( cos x ) = − sin x d x , d ( tan x ) = sec 2 x d x .
d ( cot x ) = − csc 2 x d x , d ( sec x ) = sec x tan x d x , d ( csc x ) = − csc x cot x d x d(\cot x)=-\csc^2 x\,dx,\quad
d(\sec x)=\sec x\tan x\,dx,\quad
d(\csc x)=-\csc x\cot x\,dx d ( cot x ) = − csc 2 x d x , d ( sec x ) = sec x tan x d x , d ( csc x ) = − csc x cot x d x .
d ( arcsin x ) = 1 1 − x 2 d x , d ( arccos x ) = − 1 1 − x 2 d x d(\arcsin x)=\frac{1}{\sqrt{1-x^2}}dx,\quad
d(\arccos x)=-\frac{1}{\sqrt{1-x^2}}dx d ( arcsin x ) = 1 − x 2 1 d x , d ( arccos x ) = − 1 − x 2 1 d x .
d ( arctan x ) = 1 1 + x 2 d x d(\arctan x)=\frac{1}{1+x^2}dx d ( arctan x ) = 1 + x 2 1 d x .
3.2 Higher-Order Derivatives
Higher-Order Derivative
If a function f f f is differentiable everywhere in an interval I I I , then the function
f ( 1 ) : = f ′ : I → R \begin{equation*}
f^{(1)} := f' : I \to \mathbb{R}
\end{equation*} f ( 1 ) := f ′ : I → R
is called the first derivative of f f f . We denote f ( 0 ) : = f f^{(0)} := f f ( 0 ) := f .
By induction, if the n n n -th derivative f ( n ) f^{(n)} f ( n ) of f f f exists, and f ( n ) f^{(n)} f ( n ) is differentiable at x 0 x_0 x 0 , then we define
f ( n + 1 ) ( x 0 ) = ( f ( n ) ) ′ ( x 0 ) . \begin{equation*}
f^{(n+1)}(x_0) = \big(f^{(n)}\big)'(x_0).
\end{equation*} f ( n + 1 ) ( x 0 ) = ( f ( n ) ) ′ ( x 0 ) .
We call f ( n + 1 ) ( x 0 ) f^{(n+1)}(x_0) f ( n + 1 ) ( x 0 ) the ( n + 1 ) (n+1) ( n + 1 ) -th derivative of f f f at x 0 x_0 x 0 . The second and third derivatives are denoted by f ′ ′ f'' f ′′ and f ′ ′ ′ f''' f ′′′ , respectively.
We also use the following notations:
f ∈ C n ( I ) means f ( n ) is continuous on I ; \begin{equation*}
f \in \mathcal{C}^n(I) \quad \text{means } f^{(n)} \text{ is continuous on } I;
\end{equation*} f ∈ C n ( I ) means f ( n ) is continuous on I ;
f ∈ C ∞ ( I ) means f has derivatives of all orders on I . \begin{equation*}
f \in \mathcal{C}^\infty(I) \quad \text{means } f \text{ has derivatives of all orders on } I.
\end{equation*} f ∈ C ∞ ( I ) means f has derivatives of all orders on I .
Theorem 3.4. Let f , g f, g f , g have n n n -th derivatives at x 0 x_0 x 0 . Then λ f + μ g \lambda f + \mu g λ f + μg and f g fg f g also have n n n -th derivatives at x 0 x_0 x 0 , and we have:
( λ f + μ g ) ( n ) ( x 0 ) = λ f ( n ) ( x 0 ) + μ g ( n ) ( x 0 ) \begin{equation*}
(\lambda f + \mu g)^{(n)}(x_0) = \lambda f^{(n)}(x_0) + \mu g^{(n)}(x_0)
\end{equation*} ( λ f + μg ) ( n ) ( x 0 ) = λ f ( n ) ( x 0 ) + μ g ( n ) ( x 0 )
( f g ) ( n ) ( x 0 ) = ∑ k = 0 n C n k f ( k ) ( x 0 ) g ( n − k ) ( x 0 ) \begin{equation*}
(fg)^{(n)}(x_0) = \sum_{k=0}^{n} C_n^k\, f^{(k)}(x_0)\, g^{(n-k)}(x_0)
\end{equation*} ( f g ) ( n ) ( x 0 ) = k = 0 ∑ n C n k f ( k ) ( x 0 ) g ( n − k ) ( x 0 )
Theorem 3.5. If f f f is n n n -times differentiable at x 0 x_0 x 0 , and g g g is n n n -times differentiable at y 0 = f ( x 0 ) y_0 = f(x_0) y 0 = f ( x 0 ) , then the composite function g ∘ f g \circ f g ∘ f is n n n -times differentiable at x 0 x_0 x 0 .
Theorem 3.6. Let f , g f, g f , g be n n n -times differentiable at x 0 x_0 x 0 , and suppose g ( x 0 ) ≠ 0 g(x_0) \neq 0 g ( x 0 ) = 0 . Then f g \dfrac{f}{g} g f is n n n -times differentiable at x 0 x_0 x 0 .
Theorem 3.7. The curvature is the reciprocal of the radius of curvature:
κ = ∣ det ( x ′ ( t ) x ′ ′ ( t ) y ′ ( t ) y ′ ′ ( t ) ) ∣ [ ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2 ] 3 / 2 \begin{equation*}
\kappa =
\frac{\Big| \det
\begin{pmatrix}
x'(t) & x''(t) \\
y'(t) & y''(t)
\end{pmatrix} \Big|}
{\big[(x'(t))^2 + (y'(t))^2\big]^{3/2}}
\end{equation*} κ = [ ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2 ] 3/2 det ( x ′ ( t ) y ′ ( t ) x ′′ ( t ) y ′′ ( t ) )
3.3 Differential Mean Value Theorems
Local Extremum
A point x 0 ∈ I x_0 \in I x 0 ∈ I is called a local maximum of f f f if there exists a neighborhood V V V of x 0 x_0 x 0 such that
∀ x ∈ V ∩ I , f ( x ) ≤ f ( x 0 ) . \begin{equation*}
\forall x \in V \cap I,\quad f(x) \le f(x_0).
\end{equation*} ∀ x ∈ V ∩ I , f ( x ) ≤ f ( x 0 ) .
The definition of a local minimum is similar.
Critical Point
A point x 0 x_0 x 0 is called a critical point of f f f if
f ′ ( x 0 ) = 0. \begin{equation*}
f'(x_0) = 0.
\end{equation*} f ′ ( x 0 ) = 0.
Theorem 3.8. If f f f is differentiable at a local extremum x 0 x_0 x 0 , then x 0 x_0 x 0 is a critical point of f f f .
Theorem 3.9 (Rolle's Theorem). Suppose f f f is continuous on [ a , b ] [a,b] [ a , b ] , differentiable on ( a , b ) (a,b) ( a , b ) , and f ( a ) = f ( b ) f(a) = f(b) f ( a ) = f ( b ) . Then there exists some ξ ∈ ( a , b ) \xi \in (a,b) ξ ∈ ( a , b ) such that
f ′ ( ξ ) = 0. \begin{equation*}
f'(\xi) = 0.
\end{equation*} f ′ ( ξ ) = 0.
Corollary 1. Suppose f f f is differentiable on the open interval ( a , b ) (a,b) ( a , b ) , and
lim x → a + f ( x ) = lim x → b − f ( x ) = A ∈ R ∪ { ± ∞ } . \begin{equation*}
\lim_{x \to a^+} f(x) = \lim_{x \to b^-} f(x) = A \in \mathbb{R} \cup \{\pm\infty\}.
\end{equation*} x → a + lim f ( x ) = x → b − lim f ( x ) = A ∈ R ∪ { ± ∞ } .
Then there exists some ξ ∈ ( a , b ) \xi \in (a,b) ξ ∈ ( a , b ) such that
f ′ ( ξ ) = 0. \begin{equation*}
f'(\xi) = 0.
\end{equation*} f ′ ( ξ ) = 0.
Theorem 3.10 (Cauchy's Mean Value Theorem). Let − ∞ ≤ t 1 < t 2 ≤ + ∞ -\infty \le t_1 < t_2 \le +\infty − ∞ ≤ t 1 < t 2 ≤ + ∞ , and let α , β , A , B ∈ R \alpha, \beta, A, B \in \mathbb{R} α , β , A , B ∈ R . Suppose x ( t ) x(t) x ( t ) and y ( t ) y(t) y ( t ) are differentiable on the open interval ( t 1 , t 2 ) (t_1, t_2) ( t 1 , t 2 ) , and
lim t → t 1 + x ( t ) = x 1 , lim t → t 2 − x ( t ) = x 2 , lim t → t 1 + y ( t ) = y 1 , lim t → t 2 − y ( t ) = y 2 . \begin{equation*}
\lim_{t \to t_1^+} x(t) = x_1,\quad
\lim_{t \to t_2^-} x(t) = x_2,\quad
\lim_{t \to t_1^+} y(t) = y_1,\quad
\lim_{t \to t_2^-} y(t) = y_2.
\end{equation*} t → t 1 + lim x ( t ) = x 1 , t → t 2 − lim x ( t ) = x 2 , t → t 1 + lim y ( t ) = y 1 , t → t 2 − lim y ( t ) = y 2 .
Then there exists some ξ ∈ ( t 1 , t 2 ) \xi \in (t_1, t_2) ξ ∈ ( t 1 , t 2 ) such that
x ′ ( ξ ) ( y 2 − y 1 ) = y ′ ( ξ ) ( x 2 − x 1 ) . \begin{equation*}
x'(\xi)(y_2 - y_1) = y'(\xi)(x_2 - x_1).
\end{equation*} x ′ ( ξ ) ( y 2 − y 1 ) = y ′ ( ξ ) ( x 2 − x 1 ) .
Theorem 3.11 (Lagrange's Mean Value Theorem). Suppose f f f is continuous on the closed interval [ a , b ] [a,b] [ a , b ] and differentiable on the open interval ( a , b ) (a,b) ( a , b ) . Then there exists some ξ ∈ ( a , b ) \xi \in (a,b) ξ ∈ ( a , b ) such that
f ′ ( ξ ) = f ( b ) − f ( a ) b − a . \begin{equation*}
f'(\xi) = \frac{f(b) - f(a)}{b - a}.
\end{equation*} f ′ ( ξ ) = b − a f ( b ) − f ( a ) .
Theorem 3.12 (Darboux's Theorem). Suppose f f f is differentiable on an interval I I I . Then f ′ ( I ) f'(I) f ′ ( I ) is an interval. In particular, if x 1 , x 2 ∈ I x_1, x_2 \in I x 1 , x 2 ∈ I satisfy
f ′ ( x 1 ) < 0 < f ′ ( x 2 ) , \begin{equation*}
f'(x_1) < 0 < f'(x_2),
\end{equation*} f ′ ( x 1 ) < 0 < f ′ ( x 2 ) ,
then there exists some ξ \xi ξ between x 1 x_1 x 1 and x 2 x_2 x 2 such that
f ′ ( ξ ) = 0. \begin{equation*}
f'(\xi) = 0.
\end{equation*} f ′ ( ξ ) = 0.
Corollary 1. If f f f is differentiable on an interval I I I , and
f ′ ( x ) ≠ 0 ( ∀ x ∈ I ) , \begin{equation*}
f'(x) \ne 0 \quad (\forall x \in I),
\end{equation*} f ′ ( x ) = 0 ( ∀ x ∈ I ) ,
then f f f is strictly monotonic on I I I .
3.4 Using Derivatives to Analyze Functions
Monotonicity of Function
Theorem 3.13. Suppose f f f is continuous on an interval I I I and differentiable in the interior of I I I . Then:
∀ x ∈ I , f ′ ( x ) ≥ 0 ( resp. f ′ ( x ) ≤ 0 ) \begin{equation*}
\forall x \in I,\quad f'(x) \ge 0\ \ (\text{resp. } f'(x) \le 0)
\end{equation*} ∀ x ∈ I , f ′ ( x ) ≥ 0 ( resp. f ′ ( x ) ≤ 0 )
iff f f f is non-decreasing (resp. non-increasing) on I I I .
∀ x ∈ I , f ′ ( x ) = 0 \begin{equation*}
\forall x \in I,\quad f'(x) = 0
\end{equation*} ∀ x ∈ I , f ′ ( x ) = 0
iff f f f is constant on I I I .
∀ x ∈ I , f ′ ( x ) > 0 ( resp. f ′ ( x ) < 0 ) \begin{equation*}
\forall x \in I,\quad f'(x) > 0\ \ (\text{resp. } f'(x) < 0)
\end{equation*} ∀ x ∈ I , f ′ ( x ) > 0 ( resp. f ′ ( x ) < 0 )
implies that f f f is strictly increasing (resp. strictly decreasing) on I I I .
Strict Local Extremum
Theorem 3.14. Assume f f f is differentiable at x 0 x_0 x 0 and
f ′ ( x 0 ) = 0. \begin{equation*}
f'(x_0) = 0.
\end{equation*} f ′ ( x 0 ) = 0.
If f ′ ′ ( x 0 ) > 0 f''(x_0) > 0 f ′′ ( x 0 ) > 0 , then x 0 x_0 x 0 is a strict local minimum of f f f .
If f ′ ′ ( x 0 ) < 0 f''(x_0) < 0 f ′′ ( x 0 ) < 0 , then x 0 x_0 x 0 is a strict local maximum of f f f .
Theorem 3.15. Assume f f f is 2 n 2n 2 n -times differentiable at x 0 x_0 x 0 , where n n n is a positive integer, and
f ′ ( x 0 ) = ⋯ = f ( 2 n − 1 ) ( x 0 ) = 0. \begin{equation*}
f'(x_0) = \cdots = f^{(2n-1)}(x_0) = 0.
\end{equation*} f ′ ( x 0 ) = ⋯ = f ( 2 n − 1 ) ( x 0 ) = 0.
If f ( 2 n ) ( x 0 ) > 0 f^{(2n)}(x_0) > 0 f ( 2 n ) ( x 0 ) > 0 , then x 0 x_0 x 0 is a strict local minimum of f f f .
If f ( 2 n ) ( x 0 ) < 0 f^{(2n)}(x_0) < 0 f ( 2 n ) ( x 0 ) < 0 , then x 0 x_0 x 0 is a strict local maximum of f f f .
Theorem 3.16. Assume f f f is ( 2 n + 1 ) (2n+1) ( 2 n + 1 ) -times differentiable at x 0 x_0 x 0 , where n n n is a positive integer, and
f ′ ( x 0 ) = ⋯ = f ( 2 n ) ( x 0 ) = 0. \begin{equation*}
f'(x_0) = \cdots = f^{(2n)}(x_0) = 0.
\end{equation*} f ′ ( x 0 ) = ⋯ = f ( 2 n ) ( x 0 ) = 0.
If f ( 2 n + 1 ) ( x 0 ) > 0 f^{(2n+1)}(x_0) > 0 f ( 2 n + 1 ) ( x 0 ) > 0 , then f f f is strictly increasing in a neighborhood of x 0 x_0 x 0 .
If f ( 2 n + 1 ) ( x 0 ) < 0 f^{(2n+1)}(x_0) < 0 f ( 2 n + 1 ) ( x 0 ) < 0 , then f f f is strictly decreasing in a neighborhood of x 0 x_0 x 0 .
3.5 Convexity of Functions
Convex Function
A function f f f is called convex on an interval I I I if for all x 1 , x 2 ∈ I x_1, x_2 \in I x 1 , x 2 ∈ I and all t t t with 0 < t < 1 0 < t < 1 0 < t < 1 , we have
f ( ( 1 − t ) x 1 + t x 2 ) ≤ ( 1 − t ) f ( x 1 ) + t f ( x 2 ) . \begin{equation*}
f((1-t)x_1 + t x_2) \le (1-t) f(x_1) + t f(x_2).
\end{equation*} f (( 1 − t ) x 1 + t x 2 ) ≤ ( 1 − t ) f ( x 1 ) + t f ( x 2 ) .
If equality occurs only when x 1 = x 2 x_1 = x_2 x 1 = x 2 , then f f f is called strictly convex .
Theorem 3.17. Let f f f be a convex function on the interval I I I . Then for any x 1 , x 2 , ⋯ , x n ∈ I x_1, x_2, \cdots, x_n \in I x 1 , x 2 , ⋯ , x n ∈ I , and λ 1 , λ 2 , ⋯ , λ n > 0 \lambda_1, \lambda_2, \cdots, \lambda_n > 0 λ 1 , λ 2 , ⋯ , λ n > 0 , with λ 1 + λ 2 + ⋯ + λ n = 1 \lambda_1 + \lambda_2 + \cdots + \lambda_n = 1 λ 1 + λ 2 + ⋯ + λ n = 1 , we have
f ( ∑ i = 1 n λ i x i ) ⩽ ∑ i = 1 n λ i f ( x i ) . \begin{equation*}
f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \leqslant \sum_{i=1}^{n} \lambda_i f(x_i).
\end{equation*} f ( i = 1 ∑ n λ i x i ) ⩽ i = 1 ∑ n λ i f ( x i ) .
If f f f is a strictly convex function on I I I , then when x 1 , x 2 , ⋯ , x n x_1, x_2, \cdots, x_n x 1 , x 2 , ⋯ , x n are not all equal, we have
f ( ∑ i = 1 n λ i x i ) < ∑ i = 1 n λ i f ( x i ) . \begin{equation*}
f\left(\sum_{i=1}^{n} \lambda_i x_i\right) < \sum_{i=1}^{n} \lambda_i f(x_i).
\end{equation*} f ( i = 1 ∑ n λ i x i ) < i = 1 ∑ n λ i f ( x i ) .
Theorem 3.18. The function f f f is a convex function on the interval I I I if and only if for any ( x 1 , x 2 ) ⊂ I (x_1, x_2) \subset I ( x 1 , x 2 ) ⊂ I and any x ∈ ( x 1 , x 2 ) x \in (x_1, x_2) x ∈ ( x 1 , x 2 ) , we have
f ( x ) − f ( x 1 ) x − x 1 ⩽ f ( x 2 ) − f ( x 1 ) x 2 − x 1 ⩽ f ( x 2 ) − f ( x ) x 2 − x . \begin{equation*}
\frac{f(x) - f(x_1)}{x - x_1} \leqslant \frac{f(x_2) - f(x_1)}{x_2 - x_1} \leqslant \frac{f(x_2) - f(x)}{x_2 - x}.
\end{equation*} x − x 1 f ( x ) − f ( x 1 ) ⩽ x 2 − x 1 f ( x 2 ) − f ( x 1 ) ⩽ x 2 − x f ( x 2 ) − f ( x ) .
Corollary 1. Let f : I → R f: I \to \mathbb{R} f : I → R be a convex function. If x 0 x_0 x 0 is an interior point of I I I (i.e., x 0 ∈ int ( I ) x_0 \in \text{int}(I) x 0 ∈ int ( I ) ), then f f f is continuous at x 0 x_0 x 0 .
Corollary 2. Let f f f be convex on an open interval ( a , b ) (a, b) ( a , b ) . For every x ∈ ( a , b ) x \in (a, b) x ∈ ( a , b ) , both the left-hand derivative f − ′ ( x ) f'_-(x) f − ′ ( x ) and the right-hand derivative f + ′ ( x ) f'_+(x) f + ′ ( x ) exist and are finite.
Theorem 3.19. Let f f f be continuous on [ a , b ] [a, b] [ a , b ] and differentiable on ( a , b ) (a, b) ( a , b ) , then a necessary and sufficient condition for f f f to be a convex function (strictly convex function) on [ a , b ] [a, b] [ a , b ] is that f ′ f' f ′ is increasing (strictly increasing) on ( a , b ) (a, b) ( a , b ) .
3.6 L'Hospital's Rule
Theorem 3.20 (0 0 \frac{0}{0} 0 0 Form). Let f , g f, g f , g be differentiable on the interval ( a , b ) (a,b) ( a , b ) . Assume that
f ( x ) = o ( 1 ) , g ( x ) = o ( 1 ) , x → a , g ′ ( x ) ≠ 0. \begin{equation*}
f(x) = o(1),\quad g(x)=o(1),\quad x\to a,\quad g'(x)\ne 0.
\end{equation*} f ( x ) = o ( 1 ) , g ( x ) = o ( 1 ) , x → a , g ′ ( x ) = 0.
If
lim x → a f ′ ( x ) g ′ ( x ) = A ∈ R ∪ { ± ∞ } , \begin{equation*}
\lim_{x\to a} \frac{f'(x)}{g'(x)} = A \in \mathbb{R}\cup\{\pm\infty\},
\end{equation*} x → a lim g ′ ( x ) f ′ ( x ) = A ∈ R ∪ { ± ∞ } ,
then
lim x → a f ( x ) g ( x ) = A . \begin{equation*}
\lim_{x\to a} \frac{f(x)}{g(x)} = A.
\end{equation*} x → a lim g ( x ) f ( x ) = A .
Theorem 3.21 (∞ ∞ \frac{\infty}{\infty} ∞ ∞ Form). Assume that g ( x ) → ∞ g(x)\to\infty g ( x ) → ∞ as x → a x\to a x → a , and g ′ ( x ) ≠ 0 g'(x)\neq 0 g ′ ( x ) = 0 . If
lim x → a f ′ ( x ) g ′ ( x ) = A ∈ R ∪ { ± ∞ } , \begin{equation*}
\lim_{x\to a} \frac{f'(x)}{g'(x)} = A \in \mathbb{R}\cup\{\pm\infty\},
\end{equation*} x → a lim g ′ ( x ) f ′ ( x ) = A ∈ R ∪ { ± ∞ } ,
then
lim x → a f ( x ) g ( x ) = A . \begin{equation*}
\lim_{x\to a} \frac{f(x)}{g(x)} = A.
\end{equation*} x → a lim g ( x ) f ( x ) = A .
Confirm that g ′ ( x ) ≠ 0 g'(x)\neq 0 g ′ ( x ) = 0 on a neighborhood of the point
Definition of the n n n -th Order Taylor Polynomial
Assume that f f f has n n n derivatives at x 0 x_0 x 0 . The n n n -th order Taylor polynomial of f f f at x 0 x_0 x 0 is defined by
T f , x 0 , n ( h ) = f ( x 0 ) + f ′ ( x 0 ) h + f ′ ′ ( x 0 ) 2 h 2 + ⋯ + f ( n ) ( x 0 ) n ! h n . \begin{equation*}
T_{f,x_0,n}(h)
= f(x_0)
+ f'(x_0) h
+ \frac{f''(x_0)}{2} h^2
+ \cdots
+ \frac{f^{(n)}(x_0)}{n!} h^n .
\end{equation*} T f , x 0 , n ( h ) = f ( x 0 ) + f ′ ( x 0 ) h + 2 f ′′ ( x 0 ) h 2 + ⋯ + n ! f ( n ) ( x 0 ) h n .
We call T f , x 0 , n ( h ) T_{f,x_0,n}(h) T f , x 0 , n ( h ) the n n n -th order Taylor polynomial of f f f at x 0 x_0 x 0 .
Taylor’s Theorem with Peano Remainder
If f f f has n n n derivatives at x 0 x_0 x 0 , then a polynomial
P n ( h ) = a 0 + a 1 h + ⋯ + a n h n \begin{equation*}
P_n(h)=a_0+a_1 h+\cdots+a_n h^n
\end{equation*} P n ( h ) = a 0 + a 1 h + ⋯ + a n h n
satisfies
f ( x 0 + h ) = P n ( h ) + o ( h n ) , h → 0 , \begin{equation*}
f(x_0+h)=P_n(h)+o(h^n),\qquad h\to 0,
\end{equation*} f ( x 0 + h ) = P n ( h ) + o ( h n ) , h → 0 ,
if and only if P n ( h ) P_n(h) P n ( h ) is the n n n -th order Taylor polynomial of f f f at x 0 x_0 x 0 .
Taylor's Theorem with Lagrange Remainder
Assume that f f f is continuous on an interval I I I and ( n + 1 ) (n+1) ( n + 1 ) times differentiable on the interior of I I I . For any interior point x 0 ∈ I x_0\in I x 0 ∈ I and any x ∈ I x\in I x ∈ I , there exists a point ξ \xi ξ strictly between x x x and x 0 x_0 x 0 such that
f ( x ) = T f , x 0 , n ( x − x 0 ) + f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 . \begin{equation*}
f(x)
= T_{f,x_0,n}(x - x_0)
+ \frac{f^{(n+1)}(\xi)}{(n+1)!}\,(x-x_0)^{\,n+1}.
\end{equation*} f ( x ) = T f , x 0 , n ( x − x 0 ) + ( n + 1 )! f ( n + 1 ) ( ξ ) ( x − x 0 ) n + 1 .
Examples
e x = 1 + x + x 2 2 + ⋯ + x n n ! + o ( x n ) , x → 0. \begin{equation*}
e^{x}
= 1 + x + \frac{x^{2}}{2}
+ \cdots + \frac{x^{n}}{n!}
+ o(x^{n}),\qquad x\to 0.
\end{equation*} e x = 1 + x + 2 x 2 + ⋯ + n ! x n + o ( x n ) , x → 0.
sin x = x − x 3 3 ! + ⋯ + ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! + o ( x 2 n + 2 ) , x → 0 , \begin{equation*}
\sin x
= x - \frac{x^{3}}{3!}
+ \cdots + (-1)^{n}\frac{x^{2n+1}}{(2n+1)!}
+ o(x^{2n+2}),\qquad x\to 0,
\end{equation*} sin x = x − 3 ! x 3 + ⋯ + ( − 1 ) n ( 2 n + 1 )! x 2 n + 1 + o ( x 2 n + 2 ) , x → 0 ,
cos x = 1 − x 2 2 ! + ⋯ + ( − 1 ) n x 2 n ( 2 n ) ! + o ( x 2 n + 1 ) , x → 0 , \begin{equation*}
\cos x
= 1 - \frac{x^{2}}{2!}
+ \cdots + (-1)^{n}\frac{x^{2n}}{(2n)!}
+ o(x^{2n+1}),\qquad x\to 0,
\end{equation*} cos x = 1 − 2 ! x 2 + ⋯ + ( − 1 ) n ( 2 n )! x 2 n + o ( x 2 n + 1 ) , x → 0 ,
ln ( 1 + x ) = x − x 2 2 + ⋯ + ( − 1 ) n − 1 x n n + o ( x n ) , x → 0. \begin{equation*}
\ln(1+x)
= x- \frac{x^{2}}{2}
+ \cdots + (-1)^{n-1}\frac{x^{n}}{n}
+ o(x^{n}),\qquad x\to 0.
\end{equation*} ln ( 1 + x ) = x − 2 x 2 + ⋯ + ( − 1 ) n − 1 n x n + o ( x n ) , x → 0.
( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + ⋯ + α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n + o ( x n ) , x → 0. \begin{equation*}
(1+x)^{\alpha}
= 1 + \alpha x
+ \frac{\alpha(\alpha-1)}{2!}x^{2}
+ \cdots
+ \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^{n}
+ o(x^{n}),\qquad x\to 0.
\end{equation*} ( 1 + x ) α = 1 + αx + 2 ! α ( α − 1 ) x 2 + ⋯ + n ! α ( α − 1 ) ⋯ ( α − n + 1 ) x n + o ( x n ) , x → 0.
arctan x = x − x 3 3 + ⋯ + ( − 1 ) n x 2 n + 1 2 n + 1 + o ( x 2 n + 2 ) , x → 0 , \begin{equation*}
\arctan x
= x - \frac{x^{3}}{3}
+ \cdots + (-1)^{n}\frac{x^{2n+1}}{2n+1}
+ o(x^{2n + 2}),\qquad x\to 0,
\end{equation*} arctan x = x − 3 x 3 + ⋯ + ( − 1 ) n 2 n + 1 x 2 n + 1 + o ( x 2 n + 2 ) , x → 0 ,