4.1 The Concept of Indefinite Integrals
A function F is called an antiderivative of a function f on an interval I⊂R if
F′(x)=f(x),∀x∈I.
The indefinite integral of f on I⊂R is the family of all antiderivatives of f on I, and is denoted by
∫f(x)dx.
Let I⊂R be an interval. If F1 and F2 are two antiderivatives of f on I, then the difference F1(x)−F2(x) is a constant. Consequently,
∫f(x)dx=F(x)+C,
where F is any antiderivative of f on I, and C is an arbitrary constant.
Examples
-
∫exdx=ex+C.
-
∫sinxdx=−cosx+C,
∫cosxdx=sinx+C.
∫sinhxdx=coshx+C,
∫coshxdx=sinhx+C.
Where
sinhx=2ex−e−x,coshx=2ex+e−x.
-
For α=−1,
∫xαdx=α+1xα+1+C.
-
∫x1dx=ln∣x∣+C.
-
∫1+x21dx=arctanx+C.
4.2 The Computation of Indefinite Integrals
Theorem 4.1. If F and G are antiderivatives of f and g on an interval I, then λF+μG is an antiderivative of λf+μg on I. Consequently,
∫(λf(x)+μg(x))dx=λ∫f(x)dx+μ∫g(x)dx.
Theorem 4.2. If F and G are antiderivatives of f and g, respectively, then
∫f(G(x))g(x)dx=F(G(x))+C.
Theorem 4.3. If F and G are antiderivatives of f and g on an interval I, then
∫F(x)g(x)dx=F(x)G(x)−∫G(x)f(x)dx.
Examples
-
Compute
∫1+x2xdx.
Let
y=1+x2,dy=2xdx.
Then
∫1+x2xdx=21∫1+x21d(1+x2)=21∫y1dy.
Thus
21∫y1dy=21ln∣y∣+C=21ln(1+x2)+C.
-
Compute
∫cos2mx1dx.
Let
t=tanx,dt=sec2xdx=cos2x1dx.
Then
∫cos2mx1dx=∫cos2m−2x1d(tanx)=∫(1+t2)m−1dt.
Thus the integral can be reduced to a polynomial-type integral in t:
∫cos2mx1dx=∫(1+t2)m−1dt,t=tanx.
- Compute
∫f(cos2x)dx.
We first rewrite the integrand:
∫f(cos2x)dx=∫cos2xf(cos2x)cos2xdx.
Let
t=tanx,dt=cos2x1dx,cos2x=1+t21.
Then
∫f(cos2x)dx=∫1+t21f(1+t21)dt.
Thus the integral of f(cos2x) is transformed into an integral in t:
∫f(cos2x)dx=∫1+t21f(1+t21)dt,t=tanx.
-
Compute
∫x2+a21dx
Let
θ=arctan(ax)
Then
∫x2+a21dx=∫a2tan2θ+a21d(atanθ)
Since
a2tan2θ+a2=a1+tan2θ=cosθa,
we have
∫x2+a21dx=∫cosθ1dθ
Let
t=sinθ,dt=cosθdθ.
Then
∫cosθ1dθ=21∫(1−t1+1+t1)dt=21ln1−t1+t+C
Thus
21ln1−sinθ1+sinθ+C
Since
sinθ=a2+x2x,
we get
21ln(1−a2+x2x1+a2+x2x)=ln(x+a2+x2)+C1.
Therefore
∫x2+a21dx=ln(x+a2+x2)+C.
-
Let
In=∫exsinnxdx.
Then
In=∫exsinnxdx=∫sinnxd(ex)=exsinnx−∫exd(sinnx).
Compute the differential:
d(sinnx)=nsinn−1xcosxdx.
Hence
In=exsinnx−n∫sinn−1xcosxexdx.
Rewrite the integral:
In=exsinnx−nexsinn−1xcosx+n∫exd(sinn−1xcosx).
Thus
In=ex(sinnx−nsinn−1xcosx)+n(n−1)(In−2−In)−nIn.
Solve for (I_n):
In=n2+1exsinn−1x(sinx−ncosx)+n(n−1)In−2.
Special case:
I1=2ex(sinx−cosx).
-
A rational function is a quotient of two polynomials:
R(x)=Q(x)P(x),P,Q∈R[x],Q(x)=0.
To integrate R(x), follow these steps.
Polynomial Long Division
If
degP≥degQ,
divide P by Q:
Q(x)P(x)=S(x)+Q(x)A(x),degA<degQ.
Thus,
∫R(x)dx=∫S(x)dx+∫Q(x)A(x)dx.
Factor the Denominator
Factor Q(x) into irreducible real factors:
Q(x)=∏(x−ai)ki∏(x2+bjx+cj)mj,
where each quadratic satisfies
bj2−4cj<0.
Partial Fraction Decomposition
x−aA1+(x−a)2A2+⋯+(x−a)kAk
x2+bx+cA1x+B1+(x2+bx+c)2A2x+B2+⋯+(x2+bx+c)mAmx+Bm.
Integrate Each Term
∫x−a1dx=ln∣x−a∣+C.
∫(x−a)k1dx=k−1−(x−a)−k+1+C(k≥2).
x2+bx+c=(x+2b)2+d,d=c−4b2.
∫(x+2b)2+d1dx=d1arctan(dx+2b)+C.
∫(x+2b)2+dx+2bdx=21ln((x+2b)2+d)+C.
-
In=∫(1+x2)n1dx(n≥2).
Write
In=∫(1+x2)n1dx=∫(1+x2)n(1+x2)−x2dx=In−1−∫(1+x2)nx2dx.
∫(1+x2)nx2dx=21∫(1+x2)nxd(1+x2)=2(1−n)1∫xd((1+x2)1−n)=2(1−n)1((1+x2)n−1x−∫(1+x2)n−11dx).
Therefore
In=(1−2(n−1)1)In−1+2(n−1)1(1+x2)n−1x.
Thus the reduction formula is
In=2(n−1)(1+x2)n−1x+2(n−1)2n−3In−1,n≥2.
Together with
I1=∫1+x2dx=arctanx+C,
-
∫R(cosθ,sinθ)dθ=∫R(1+t21−t2,1+t22t)1+t22dt.
∫R(x,x2−1)dx=∫R(1−t21+t2,1−t22t)d(1−t21+t2).