跳到主要内容

Number Systems

Natural Numbers

  1. There exists an element 0N0 \in \mathbb{N}.

  2. There exists a function

    S:NN\begin{equation*} S : \mathbb{N} \to \mathbb{N} \end{equation*}

    called the successor function, such that for every nNn \in \mathbb{N}, S(n)S(n) represents the next natural number after nn.

  3. Zero is not the successor of any number

    nN,  S(n)0\begin{equation*} \forall n \in \mathbb{N},\; S(n) \neq 0 \end{equation*}
  4. Successor function is injective (one-to-one)

    m,nN,  S(m)=S(n)    m=n\begin{equation*} \forall m, n \in \mathbb{N},\; S(m) = S(n) \implies m = n \end{equation*}
  5. Principle of mathematical induction. For any property P(n)P(n) defined on N\mathbb{N}: If

    P(0) is true, and nN,  P(n)P(S(n)),\begin{equation*} P(0) \text{ is true, and } \forall n \in \mathbb{N},\; P(n) \Rightarrow P(S(n)), \end{equation*}

​ then

nN,  P(n) is true. \begin{equation*} \forall n \in \mathbb{N},\; P(n) \text{ is true.} \end{equation*}

Addition

The addition +:N×NN+ : \mathbb{N} \times \mathbb{N} \to \mathbb{N} is defined recursively as follows:

a+0=a\begin{equation*} a + 0 = a \end{equation*} a+S(b)=S(a+b)\begin{equation*} a + S(b) = S(a + b) \end{equation*}

Multiplication

The multiplication ×:N×NN\times : \mathbb{N} \times \mathbb{N} \to \mathbb{N} is defined recursively as follows:

a×0=0\begin{equation*} a \times 0 = 0 \end{equation*} a×S(b)=a×b+a\begin{equation*} a \times S(b) = a \times b + a \end{equation*}

Order Relation

For all m,nNm, n \in \mathbb{N}:

m<S(n)    (m<n) or (m=n).\begin{equation*} m < S(n) \iff (m < n) \text{ or } (m = n). \end{equation*}

This defines << recursively based on the successor structure.

Theorems

  1. a+(b+c)=(a+b)+ca + (b + c) = (a + b) + c.

  2. a+0=0+a=aa + 0 = 0 + a = a.

  3. a+b=b+aa + b = b + a.

  4. (a+b)×c=a×c+b×c(a + b)\times c = a \times c + b \times c.

  5. a×1=1×a=aa \times 1 = 1 \times a = a.

  6. a×b=b×aa \times b = b \times a.

  7. a×(b×c)=(a×b)×ca \times (b \times c) = (a \times b) \times c.

Integers

Integers can be defined from natural numbers as equivalence classes of ordered pairs of natural numbers:

Z={(a,b)a,bN}\begin{equation*} \mathbb{Z} = \{ (a, b) \mid a, b \in \mathbb{N} \} \end{equation*}

We define an equivalence relation:

(a,b)(c,d)    a+d=b+c\begin{equation*} (a, b) \sim (c, d) \iff a + d = b + c \end{equation*}

Each equivalence class [(a,b)][(a, b)] represents the difference between aa and bb. Thus we have:

0=[(0,0)],1=[(1,0)],1=[(0,1)],ab=[(a,b)].\begin{equation*} \begin{aligned} 0 &= [(0, 0)], \\ 1 &= [(1, 0)], \\ -1 &= [(0, 1)], \\ a - b &= [(a, b)]. \end{aligned} \end{equation*}

Addition

[(a,b)]+[(c,d)]=[(a+c,b+d)]\begin{equation*} [(a, b)] + [(c, d)] = [(a + c,\, b + d)] \end{equation*}

Multiplication

[(a,b)]×[(c,d)]=[(ac+bd,ad+bc)]\begin{equation*} [(a, b)] \times [(c, d)] = [(ac + bd,\, ad + bc)] \end{equation*}

These definitions are well-defined, meaning the result does not depend on the choice of representatives of the equivalence classes.

Order Relation

[(a,b)]<[(c,d)]    a+d<b+c.\begin{equation*} [(a,b)] < [(c,d)] \iff a + d < b + c. \end{equation*}

Theorems

  1. a+b=b+a,a×b=b×aa + b = b + a, \qquad a \times b = b \times a.

  2. a+(b+c)=(a+b)+c,a×(b×c)=(a×b)×ca + (b + c) = (a + b) + c, \qquad a \times (b \times c) = (a \times b) \times c.

  3. a+0=a,a×1=aa + 0 = a, \qquad a \times 1 = a.

  4. aZ,  (a)Z such that a+(a)=0\forall a \in \mathbb{Z}, \; \exists (-a) \in \mathbb{Z} \text{ such that } a + (-a) = 0.

  5. a×(b+c)=a×b+a×ca \times (b + c) = a \times b + a \times c.

Rational Numbers

The set of rational numbers Q\mathbb{Q} is constructed from the integers Z\mathbb{Z} as the set of equivalence classes of ordered pairs of integers:

Q={(a,b)aZ,  bZ{0}}\begin{equation*} \mathbb{Q} = \{ (a, b) \mid a \in \mathbb{Z},\; b \in \mathbb{Z} \setminus \{0\} \} \end{equation*}

Each pair (a,b)(a,b) intuitively represents the fraction ab\dfrac{a}{b}.

We define an equivalence relation:

(a,b)(c,d)    ad=bc\begin{equation*} (a,b) \sim (c,d) \iff ad = bc \end{equation*}

Each equivalence class [(a,b)][(a,b)] corresponds to a rational number.

We write:

ab=[(a,b)],where b0\begin{equation*} \dfrac{a}{b} = [(a,b)], \quad \text{where } b \neq 0 \end{equation*}

Addition

ab+cd=ad+bcbd\begin{equation*} \dfrac{a}{b} + \dfrac{c}{d} = \dfrac{ad + bc}{bd} \end{equation*}

Multiplication

ab×cd=acbd\begin{equation*} \dfrac{a}{b} \times \dfrac{c}{d} = \dfrac{ac}{bd} \end{equation*}

Additive Inverse

ab=ab\begin{equation*} -\dfrac{a}{b} = \dfrac{-a}{b} \end{equation*}

Multiplicative Inverse

(ab)1=ba,a0\begin{equation*} \left(\dfrac{a}{b}\right)^{-1} = \dfrac{b}{a}, \quad a \neq 0 \end{equation*}

Order Relation

To compare two rational numbers, let

ab,  cdQ,b>0,  d>0.\begin{equation*} \dfrac{a}{b}, \; \dfrac{c}{d} \in \mathbb{Q}, \quad b > 0, \; d > 0. \end{equation*}

We define the order relation << on Q\mathbb{Q} by:

ab<cd    ad<bc.\begin{equation*} \dfrac{a}{b} < \dfrac{c}{d} \iff ad < bc. \end{equation*}

Theorems

  1. a+b=b+a,a×b=b×aa+b = b+a, \qquad a\times b = b\times a.

  2. a+(b+c)=(a+b)+c,a×(b×c)=(a×b)×ca+(b+c) = (a+b)+c, \qquad a\times(b\times c) = (a\times b)\times c.

  3. a+0=a,a×1=aa+0 = a, \qquad a\times1 = a.

  4. aQ,  (a) such that a+(a)=0\forall a \in \mathbb{Q},\; \exists (-a) \text{ such that } a+(-a)=0.

  5. aQ{0},  a1 such that a×a1=1\forall a \in \mathbb{Q}\setminus\{0\},\; \exists a^{-1} \text{ such that } a\times a^{-1}=1.

  6. a×(b+c)=a×b+a×ca\times(b+c) = a\times b + a\times c.

Real Numbers

A Dedekind cut in Q\mathbb{Q} is a partition (A,B)(A, B) of Q\mathbb{Q} satisfying:

1.  A,BQ,  AB=Q,  AB=,2.  aA,  bB,  a<b,3.  A has no greatest element.\begin{equation*} \begin{aligned} 1.\;& A, B \subset \mathbb{Q}, \; A \cup B = \mathbb{Q}, \; A \cap B = \varnothing, \\[4pt] 2.\;& \forall a \in A,\; \forall b \in B,\; a < b, \\[4pt] 3.\;& A \text{ has no greatest element.} \end{aligned} \end{equation*}

Each real number is identified with one such cut AA, which intuitively represents “all rationals less than that real number.”

For example:

2={qQq<0 or q2<2}.\begin{equation*} \sqrt{2} = \{ q \in \mathbb{Q} \mid q < 0 \text{ or } q^2 < 2 \}. \end{equation*}

The set of all Dedekind cuts is denoted by:

R={AQA is a Dedekind cut}.\begin{equation*} \mathbb{R} = \{ A \subset \mathbb{Q} \mid A \text{ is a Dedekind cut} \}. \end{equation*}

Addition

A+B={a+baA,bB}.\begin{equation*} A + B = \{ a + b \mid a \in A,\, b \in B \}. \end{equation*}

Multiplication

(for positive cuts)

A×B={a×baA,bB,  a,b>0}.\begin{equation*} A \times B = \{ a \times b \mid a \in A,\, b \in B,\; a,b > 0 \}. \end{equation*}

Negatives and general cases are defined symmetrically by extending signs.

Order Relation

Define:

A<B    AB.\begin{equation*} A < B \iff A \subsetneq B. \end{equation*}

This relation extends the usual order on Q\mathbb{Q} and makes (R,<)(\mathbb{R}, <) a totally ordered set.

Theorems

  1. a+b=b+a,a×b=b×aa+b = b+a, \qquad a\times b = b\times a.

  2. a+(b+c)=(a+b)+c,a×(b×c)=(a×b)×ca+(b+c) = (a+b)+c, \qquad a\times(b\times c) = (a\times b)\times c.

  3. a+0=a,a×1=aa+0 = a, \qquad a\times1 = a.

  4. aQ,  (a) such that a+(a)=0\forall a \in \mathbb{Q},\; \exists (-a) \text{ such that } a+(-a)=0.

  5. aQ{0},  a1 such that a×a1=1\forall a \in \mathbb{Q}\setminus\{0\},\; \exists a^{-1} \text{ such that } a\times a^{-1}=1.

  6. a×(b+c)=a×b+a×ca\times(b+c) = a\times b + a\times c.

  7. The set of rational numbers Q\mathbb{Q} is dense in R\mathbb{R}:

a,bR,  a<brQ such that a<r<b.\begin{equation*} \forall a,b \in \mathbb{R},\; a < b \Rightarrow \exists r \in \mathbb{Q} \text{ such that } a < r < b. \end{equation*}
  1. Every nonempty subset SRS \subset \mathbb{R} that is bounded above has a least upper bound (supremum) in R\mathbb{R}:
SR,  S,  if S is bounded above, then supSR.\begin{equation*} \forall S \subset \mathbb{R},\; S \neq \varnothing,\; \text{if } S \text{ is bounded above, then } \sup S \in \mathbb{R}. \end{equation*}

​ This property makes R\mathbb{R} a complete ordered field.