跳到主要内容

Continuity and Limits

Continuity of Functions

Let f:IRf: I \to \mathbb{R} be a function and let x0Ix_0 \in I.

We say that ff is continuous at x0x_0 if ε>0\forall \varepsilon > 0, δ>0\exists \delta > 0 such that for all xIx \in I.

xx0<δ    f(x)f(x0)<ε.\begin{equation*} |x - x_0| < \delta \;\Rightarrow\; |f(x) - f(x_0)| < \varepsilon. \end{equation*}

We say that ff is a continuous function if ff is continuous on its entire domain.

We say that ff is right-continuous at x0x_0 if ε>0\forall \varepsilon > 0, δ>0\exists \delta > 0 such that for all xIx \in I.

x0x<x0+δ    f(x)f(x0)<ε.\begin{equation*} x_0 \le x < x_0 + \delta \;\Rightarrow\; |f(x) - f(x_0)| < \varepsilon. \end{equation*}

Similarly, ff is left-continuous at x0x_0 if ε>0\forall \varepsilon > 0, δ>0\exists \delta > 0 such that for all xIx \in I.

x0δ<xx0    f(x)f(x0)<ε.\begin{equation*} x_0 - \delta < x \le x_0 \;\Rightarrow\; |f(x) - f(x_0)| < \varepsilon. \end{equation*} f is continuous at x0    f is both right-continuous and left-continuous at x0.\begin{equation*} f \text{ is continuous at } x_0 \;\Longleftrightarrow\; f \text{ is both right-continuous and left-continuous at } x_0. \end{equation*}

Meaning of Continuity

For xx sufficiently close to x0x_0, the function value f(x)f(x) is approximately equal to f(x0)f(x_0):

f(x)f(x0)when x is close to x0.\begin{equation*} f(x) \approx f(x_0) \quad \text{when } x \text{ is close to } x_0. \end{equation*}

Hence, continuity means that small changes in xx lead to small changes in f(x)f(x).

Examples

  1. Constant functions are continuous.

  2. The function f(x)=x2f(x) = x^2 is continuous on R\mathbb{R}.

  3. The function f(x)=xf(x) = \sqrt{x} is continuous on the interval [0,+)[0, +\infty).

  4. The function f(x)=1xf(x) = \frac{1}{x} is continuous on R{0}\mathbb{R} \setminus \{0\}.

Theorems

  1. Let ff and gg be functions such that:

    {f is continuous at x0,g is continuous at y0=f(x0),\begin{equation*} \begin{cases} f \text{ is continuous at } x_0, \\ g \text{ is continuous at } y_0 = f(x_0), \end{cases} \end{equation*}

    then the composite function gfg \circ f is continuous at x0x_0.

  2. If both ff and gg are continuous at x0x_0, then

    f+g and fg are continuous at x0.\begin{equation*} f + g \text{ and } f g \text{ are continuous at } x_0. \end{equation*}

    Moreover, if g(x0)0g(x_0) \neq 0, then

    fg is continuous at x0.\begin{equation*} \dfrac{f}{g} \text{ is continuous at } x_0. \end{equation*}
  3. Let I,JRI, J \subseteq \mathbb{R} be intervals, and let f:IJf: I \to J be monotone and onto. Then ff is a continuous function.

​ Corollary: The exponential function, the logarithmic function, and the power function are all continuous functions.

Limits of Functions

A real number x0x_0 is called an accumulation point (or limit point) of a set IRI \subseteq \mathbb{R} if:

ε>0,  xI such that 0<xx0<ε.\begin{equation*} \forall \varepsilon > 0,\; \exists x \in I \text{ such that } 0 < |x - x_0| < \varepsilon. \end{equation*}

Let f:IRf : I \to \mathbb{R} and let x0x_0 be an accumulation point of II. We say that the limit of f(x)f(x) as xx approaches x0x_0 is ARA \in \mathbb{R}, written as

limxx0f(x)=A.\begin{equation*} \lim_{x \to x_0} f(x) = A. \end{equation*}

if and only if

ε>0,  δ>0 such that xI,  0<xx0<δf(x)A<ε.\begin{equation*} \forall \varepsilon > 0,\; \exists \delta > 0 \text{ such that } \forall x \in I,\; 0 < |x - x_0| < \delta \Rightarrow |f(x) - A| < \varepsilon. \end{equation*}

The right-hand limit of a function ff at x0x_0 is denoted by

limxx0+f(x)=A,\begin{equation*} \lim_{x \to x_0^+} f(x) = A, \end{equation*}

which means:

ε>0,  δ>0 such that xI,  x0<x<x0+δf(x)A<ε.\begin{equation*} \forall \varepsilon > 0,\; \exists \delta > 0 \text{ such that } \forall x \in I,\; x_0 < x < x_0 + \delta \Rightarrow |f(x) - A| < \varepsilon. \end{equation*}

Similarly, the left-hand limit is defined by

limxx0f(x)=A.\begin{equation*} \lim_{x \to x_0^-} f(x) = A. \end{equation*}

Theorems

  1. Let x0x_0 be an accumulation point of II. Then

    limxx0f(x)=A\begin{equation*} \lim_{x \to x_0} f(x) = A \end{equation*}

    if and only if the function

    g(x)={f(x),xI{x0}A,x=x0\begin{equation*} g(x) = \begin{cases} f(x), & x \in I \setminus \{x_0\} \\ A, & x = x_0 \end{cases} \end{equation*}

    is continuous at x0x_0.

  2. If

limxx0f(x)=A,limxx0g(x)=B,\begin{equation*} \lim_{x \to x_0} f(x) = A, \quad \lim_{x \to x_0} g(x) = B, \end{equation*}

​ then

limxx0(f(x)+g(x))=A+B,limxx0(f(x)g(x))=AB.\begin{equation*} \begin{aligned} \lim_{x \to x_0} \big(f(x) + g(x)\big) &= A + B, \\ \lim_{x \to x_0} \big(f(x)g(x)\big) &= AB. \end{aligned} \end{equation*}

​ If B0B \neq 0, then

limxx0f(x)g(x)=AB.\begin{equation*} \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{A}{B}. \end{equation*}
  1. if
limxx0f(x)=y0,limyy0g(y)=B,and g is continuous at y0,\begin{equation*} \lim_{x \to x_0} f(x) = y_0, \quad \lim_{y \to y_0} g(y) = B, \quad \text{and } g \textbf{ is continuous at } y_0, \end{equation*}

then

limxx0g(f(x))=B.\begin{equation*} \lim_{x \to x_0} g(f(x)) = B. \end{equation*}
  1. Let f,g,hf, g, h be functions defined on an interval II, and let x0x_0 be a limit point of II. Suppose that for all xIx \in I,
f(x)g(x)h(x).\begin{equation*} f(x) \le g(x) \le h(x). \end{equation*}

If

limxx0f(x)=limxx0h(x)=A,\begin{equation*} \lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = A, \end{equation*}

then

limxx0g(x)=A.\begin{equation*} \lim_{x \to x_0} g(x) = A. \end{equation*}

Removable and Other Types of Discontinuities

A point x0x_0 is called a removable discontinuity of a function ff if:

  1. x0x_0 is a limit point of the domain II of f f, and the limit

    limxx0f(x)\begin{equation*} \lim_{x \to x_0} f(x) \end{equation*}

    exists;

  2. ff is either undefined at x0x_0, or

    f(x0)limxx0f(x).\begin{equation*} f(x_0) \ne \lim_{x \to x_0} f(x). \end{equation*}

In other words, ff is not continuous at x0x_0, but it can be made continuous by appropriately redefining the value f(x0)f(x_0).

A point x0x_0 is called a jump discontinuity if both one-sided limits exist but are not equal:

limxx0f(x)andlimxx0+f(x).\begin{equation*} \lim_{x \to x_0^-} f(x) \quad \text{and} \quad \lim_{x \to x_0^+} f(x). \end{equation*}

Classification

  • Type I discontinuities: include both removable and jump discontinuities.

  • Type II discontinuities: all other discontinuities that do not fall into the above categories.