跳到主要内容

Infinite Limits and Sequences

Limit at Infinity

limx+f(x)=A\begin{equation*} \lim_{x \to +\infty} f(x) = A \end{equation*}

means that

ε>0,  M>0 such that xI,  x>Mf(x)A<ε.\begin{equation*} \forall \varepsilon > 0,\; \exists M > 0 \text{ such that } \forall x \in I,\; x > M \Rightarrow |f(x) - A| < \varepsilon. \end{equation*}

Similarly,

limxf(x)=A\begin{equation*} \lim_{x \to -\infty} f(x) = A \end{equation*}

means

ε>0,  M>0 such that xI,  x<Mf(x)A<ε.\begin{equation*} \forall \varepsilon > 0,\; \exists M > 0 \text{ such that } \forall x \in I,\; x < -M \Rightarrow |f(x) - A| < \varepsilon. \end{equation*} limxf(x)=A\begin{equation*} \lim_{x \to \infty} f(x) = A \end{equation*}

means

ε>0,  M>0 such that xI,  x>Mf(x)A<ε.\begin{equation*} \forall \varepsilon > 0,\; \exists M > 0 \text{ such that } \forall x \in I,\; |x| > M \Rightarrow |f(x) - A| < \varepsilon. \end{equation*}

Deleted Neighborhoods

Let cc be one of x0,  x0+,  x0,  ,  +,  x_0,\; x_0^+,\; x_0^-,\; -\infty,\; +\infty,\; \infty. The neighborhood and deleted neighborhood of cc are defined as follows:

ccNeighborhood of ccDeleted neighborhood of cc
x0x_0An open interval JJ containing x0x_0J{x0}J \setminus \{x_0\}
x0+x_0^+(x0,x0+δ)(x_0,\, x_0+\delta)(x0,x0+δ)(x_0,\, x_0+\delta)
x0x_0^-(x0δ,x0)(x_0-\delta,\, x_0)(x0δ,x0)(x_0-\delta,\, x_0)
-\infty(,b)(-\infty,\, b)(,b)(-\infty,\, b)
++\infty(a,+)(a,\, +\infty)(a,+)(a,\, +\infty)
\infty(,b)(a,+)(-\infty,\, b)\,\cup\,(a,\, +\infty)(,b)(a,+)(-\infty,\, b)\,\cup\,(a,\, +\infty)

General Definition of Limits

Let cc be one of x0,  x0+,  x0,  ,  +,  x_0,\; x_0^+,\; x_0^-,\; -\infty,\; +\infty,\; \infty, and let AA be a real number or one of ,  +,  -\infty,\; +\infty,\; \infty.

We say that limxcf(x)=A\lim_{x \to c} f(x) = A iff:

For every neighborhood VV of AA, there exists a deleted neighborhood WW of cc such that for all xIWx \in I \cap W, we have f(x)Vf(x) \in V.

Infinite Quantities

When xcx \to c, if f(x)f(x) grows without bound, we say f(x)f(x) is an infinite quantity (or positive/negative infinite quantity).

If

limxcf(x)=(i.e. limxcf(x)=+ or limxcf(x)=),\begin{equation*} \lim_{x \to c} f(x) = \infty \quad \text{(i.e. } \lim_{x \to c} f(x) = +\infty \text{ or } \lim_{x \to c} f(x) = -\infty \text{)}, \end{equation*}

then f(x)f(x) diverges to infinity as xx approaches cc.

If

limxcf(x)=A{,+,},limyAg(y)=B,\begin{equation*} \lim_{x \to c} f(x) = A \in \{-\infty, +\infty, \infty\}, \qquad \lim_{y \to A} g(y) = B, \end{equation*}

then

limxcg(f(x))=B.\begin{equation*} \lim_{x \to c} g(f(x)) = B. \end{equation*}

However, if

limxcf(x)=A,limyAg(y)=B{,+,},\begin{equation*} \lim_{x \to c} f(x) = A, \qquad \lim_{y \to A} g(y) = B \in \{-\infty, +\infty, \infty\}, \end{equation*}

then

limxcg(f(x))=B\begin{equation*} \lim_{x \to c} g(f(x)) = B \end{equation*}

is not necessarily true.

Sequences and Their Limits

A sequence {an}n1\{a_n\}_{n \ge 1} can be regarded as a function defined on the set of positive integers N\mathbb{N}^*. Hence, its limit can be defined as

limn+an.\begin{equation*} \lim_{n \to +\infty} a_n. \end{equation*}

Theorems

  1. Let {nk}k1\{n_k\}_{k \ge 1} be a strictly increasing sequence of positive integers. Define bk=ankb_k = a_{n_k}. Then {bk}k1\{b_k\}_{k \ge 1} is called a subsequence of {an}n1\{a_n\}_{n \ge 1}.

If

limn+an=AR{,+,},\begin{equation*} \lim_{n \to +\infty} a_n = A \in \mathbb{R} \cup \{-\infty, +\infty, \infty\}, \end{equation*}

then

limk+ank=limk+bk=A.\begin{equation*} \lim_{k \to +\infty} a_{n_k} = \lim_{k \to + \infty}b_k = A. \end{equation*}
  1. Let f:(a,b)Rf:(a,b) \to \mathbb{R} be a monotone non-decreasing function.

    • If ff is bounded above, then

      limxbf(x)=supx(a,b)f(x).\begin{equation*} \lim_{x \to b^-} f(x) = \sup_{x \in (a,b)} f(x). \end{equation*}
    • If ff is unbounded above, then

      limxbf(x)=+.\begin{equation*} \lim_{x \to b^-} f(x) = +\infty. \end{equation*}
  2. Let {an}\{a_n\} be a monotone non-decreasing sequence.

    • If {an}\{a_n\} is bounded above, then

      limn+an=supn1an.\begin{equation*} \lim_{n \to +\infty} a_n = \sup_{n \ge 1} a_n. \end{equation*}
    • If {an}\{a_n\} is unbounded above, then

      limn+an=+.\begin{equation*} \lim_{n \to +\infty} a_n = +\infty. \end{equation*}

Definition of e

Let two sequences be defined as

an=(1+1n)n,bn=(1+1n)n+1.\begin{equation*} a_n = \left(1 + \frac{1}{n}\right)^n, \quad b_n = \left(1 + \frac{1}{n}\right)^{n+1}. \end{equation*}

Then:

  • ana_n is monotonically increasing.
  • bnb_n is monotonically decreasing.
  • For all nn, an<bna_n < b_n.
  • Therefore, both sequences converge and have the same limit.

We define this common limit as

e=limn+(1+1n)n.\begin{equation*} e = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n. \end{equation*}

From Discrete to Continuous

limx(1+1x)x=e.\begin{equation*} \lim_{x \to \infty} \left( 1 + \frac{1}{x} \right)^x = e. \end{equation*}

Theorems

  1. limx0ln(1+x)x=1\lim\limits_{x \to 0} \frac{\ln(1+x)}{x} = 1.
  2. limx0sinxx=1\lim\limits_{x \to 0} \frac{\sin x}{x} = 1.
  3. limx0ax1x=lna\lim\limits_{x \to 0} \frac{a^x - 1}{x} = \ln a.
  4. limx1xμ1x1=μ\lim\limits_{x \to 1} \frac{x^\mu - 1}{x - 1} = \mu.